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BLACK HOLES

➢ Solutions of Relativity

● Regions of spacetime with extremely 
high curvature

➢ Black holes from gravitational collapse

● Vacuum solution

➢ Event horizon: surface that isolate 
black hole and from where gravity is 
so strong that neither light can escape 

➢ Breakdown of General Relativity          singularity! (infinite density)

➢ Tidal forces: Chaotic spacetime (BKL conjecture)



  

➢ No-hair theorem: 
completely characterized by M, Q, J

➢ They also evaporate due to quantum 
effects (Hawking radiation) 

➢ 4th laws of black hole thermodynamics

➢ Black holes acreate all the 
surrounding matter

M→E κ→T A→S

T=
ℏκ

2π k Bc
∝

1
M S=

k Bc
3

4πG ℏ
A Bekenstein entropy

➢ Entropy as a lack of information           and Bekenstein entropy is huge! 

Quantum information theory



  

THE BLACK HOLE INFORMATION PUZZLE

➢ Theory of Quantum Gravity?

➢ Hawing flux is thermal radiation         it does not carry almost information

➢Quantum mechanically: initially is a pure state        finally is a mixed state

Non-unitary process! (not allowed in QM): Do not preserve entropy

➢ Complete evaporation due to Hawking radiation 

Entropy as a lack of information: Where is the information lost?

➢ This problems continue completely unsolved: Very different proposals



  

WHAT AM I GOING TO ADDRESS IN THIS TALK?

➢ Understand the entropy/information flow 

➢ Understand the entropy issues regarding black hole formation (coarse-graining)

➢ Simple well-understood process: Burning a lump of coal

Each photon carries (approx) 
3 bits of information

➢ Schwarzschild black hole emitted quanta emitted the same!

➢We got a lot of insight from quantum gravity corrected system

● Modifications of the information flow at last stages of evaporation



  

➢Quantum information in black hole evaporation

➢ The quantum concept of entropy: Entanglement entropy

● These analisys in the past gave rise to paradoxes          firewalls 

● We realized something was missed in the picture: Environment

➢We have introduced a new model to deal with this issue (new tools needed 
to be developed)

● We have obtained a continuous flux of entropy/information along the 
whole evaporation, without paradoxes



  

➢Quantum information in black hole evaporation

➢ The quantum concept of entropy: Entanglement entropy

● These analisys in the past gave rise to paradoxes          firewalls 

● We realized something was missed in the picture: Environment

➢We have introduced a new model to deal with this issue (new tools needed 
to be developed)

● We have obtained a continuous flux of entropy/information along the 
whole evaporation, without paradoxes

 Let’s go!!



  

ON BURNING A LUMP OF COAL

➢ Standard statistical mechanics applied to a furnace with a small hole          
blackbody radiation (Planck spectrum implies some coarse graining) 

● Transfer of thermodynamic entropy to the radiation field: S=
E
T
=
ℏω

T

S coarse grained=S before coarse graining+ S correlations I correlations

➢ Consider the effect of coarse graining the (von Neumann) entropy

➢ The average energy per photon: 〈E 〉=ℏ〈ω〉=ℏ
∫ω f (ω)d ω
∫ f (ω)d ω

= π4

30ζ(3)
k BT

➢ Consequently, we can calculate the average entropy per photon (and the 
standard deviation) [A. A-S, Matt Visser, PLB 757 (2016) 383)]

bits/photonŜ2=3.9±2.5

➢ Since we know the underlying physics is unitary          this entropy is 
compensated by an equal “hidden information”



  

COARSE GRAINING THE ENTROPY

➢ Explicit and calculable processes that takes an arbitrary system and 
monotonically and controllably drives the entropy to the maximum value

➢ It is relevant when we deal with physical issues of information

● Price of coarse graining: some properties are hidden in the system

● Measure of uncertainty          entropy as a lack of information

Coarse graining the classical Shannon entropy

Coarse graining the quantum Von Neumann entropy

➢ Continuum         continuum: Diffusion process

➢ Continuum         discretium: Box averaging

➢Discretium         discretium: Aggregation/averaging

➢Maximal mixing

➢ Tunable Partial traces

➢ Full/tunable partial decoherence



  

THERMODYNAMIC ENTROPY IN THE HAWKING FLUX

➢ Loss of Bekenstein entropy of a Schwarzschild black hole

dS
dN
=
dS /dt
dN /dt

=
d (4πk BGM

2/ ℏ c)/dt

dN /dt
=
k Bπ

4

30ζ(3)

➢ The Hawking radiation is essentially (adiabatically) transferring Bekenstein 
entropy from the hole into Clausius entropy of the radiation field
[A. A-S, M. Visser, PLB 776 (2018) 10-16]

d Ŝ 2

dN
≈3.896976 bits/quanta

➢ Estimation of the total number of emitted massless quanta
dN
dM

=
30ζ(3)

π
4

8πGM
ℏ c

EXTENSION TO BLACK HOLES

unitarity apparent/trapping horizons complete evaporation

➢ Thermodynamic entropy gain (Clausius entropy gain) of the external 
radiation field per emitted quanta         entropy gain of the Hawking flux

dS
dN
=
dE /dT H

dN
=
ℏ 〈ω〉 dN
T H dN

=
k Bπ

4

30 ζ(3)



  

➢ Throughout the evaporation process we have S Bekenstein(t )+SClausius(t )=S Bekenstein ,0

➢ So, semiclassically everything holds together very well

➢ Sparsity of the Hawking flux: Average time between emission of successive 
Hawking quanta is many times larger than the natural timescale set by the 
energies of the emitted quanta [F. Gray et al., CQG 33 (2016) 115003]



  

ENTANGLEMENT ENTROPY IN THE HAWKING FLUX

➢ Average subsystem entropies [D. N. Page, PRL 71(1993) 1291]

➢ Consider a Hilbert space that factorizes Η AB=Η AΗ B

Pure state ρAB=∣ψ〉〈ψ∣ Subsystem density matrices ρA=tr B(∣ψ〉 〈ψ∣)

Subsystem von Neumann entanglement entropy Ŝ A=−tr (ρA lnρA)

➢ Uniform average over all pure states, taking:

n1=dim(Η A) n2=dim(Η B) m=min [n1,n2], and

Ŝ n1, n2
=〈 Ŝ A〉=〈 Ŝ B 〉⩽lnmThe central result

➢ Average subsystem entropy is very close to its maximum possible value

Strict bound (combined with our results): Ŝ n1, n2
=〈 Ŝ A〉=〈 Ŝ B 〉∈(lnm−

1
2
, lnm)



  

Bipartite entanglement: black hole + Hawking radiation 
[D. N. Page, PRL 71(1993) 3743]

➢ “Closed box” argument 

➢ Initially there is no yet any Hawking radiation
Η R

Η H

trivial

enormous
( Ŝ nH , nR)0=0

➢ After the black hole has completely evaporated:       is trivialΗ H (Ŝ nH , nR)∞=0

➢ At intermediate times both dimensionalities are nontrivial (Ŝ nH , nR)t≠0

nH (t )nR(t)=nH 0
=nR∞ (Ŝ nH , nR)t=ln {nH (t ) , nH 0

nH (t ) }
Maximized when nH (t )≈√ nH 0

Ŝ nH , nR(t=t Page)≈
1
2

ln nH 0

● Since the evolution is assumed unitary: total Hilbert space is constant



  

● Subsystem entropy is initially zero          tension with Bekenstein entropy 

➢ Page curve: 

● It is the shape of this curve that underlies much of the modern 
discussion surrounding the “information puzzle” 

● If we entangle the black hole with the environment, then the total state 
is not pure

t Page

● Pages defines a novel asymmetric version of the subsystem information 
(no direct physical interpretation)         Mutual information and other 
measures of entanglement (such as negativity, tangle or concurrence)



  

➢What happens with these results?

● May be it is more appropriate to consider a tripartite system, including 
the interaction with the environment

● The late radiation is maximally entangled with the early radiation and 
the hole subsystems

Monogamy of entanglement

Firewalls

➢We though that the point is the considered “closed box” system



  

Tripartite entanglement: bh + Hawking radiation + rest of the universe 
[A. A-S, Matt Visser, PLB 757 (2016) 383)]

➢ The Hilbert space is now Η HRE=Η HΗ RΗ E

➢ Take the entire universe be in a pure state S HRE(t)=0

And now the subsystem entropies                    ,                   , S H (t)=S ER(t) S R(t)=S HE (t) S E(t)=S HR(t)

➢ Initially              ,S H 0
=S E0

S R0
=0=S HE0

➢Once the black hole has completely evaporated                  , S R∞=S E∞S H∞
=0=S ER∞

➢ The evolution is assumed unitary, with the unitary time evolution operator 
factorized as

U HRE=U HR(t)U E (t)

Therefore 
nE0
=nE∞≡nE

nH (t )nR(t)=nH 0
=nR∞

➢We make an additional assumption: That the Bekenstein entropy can be 
identified with the average entanglement entropy



  

〈 Ŝ H (t ) 〉≈lnmin[nH (t ) , nR(t )nE ]≈ ln nH (t )

〈 Ŝ R(t)〉≈lnmin [nR(t ) , nH (t)nE ]≈ln nR(t)
〈 Ŝ H (t)〉+ 〈 Ŝ R(t)〉≈ln [nH (t)nR(t )]=ln nH 0

Ŝ Bekenstein(t)+ 〈 Ŝ Hawking radiation(t ) 〉≈Ŝ Bekenstein,0

➢ Then, the entropies:

●  

●  

➢ The “rest of the universe environment”: the extent to which the subsystem 
is entangled

〈 Ŝ E(t)〉≈lnmin [nE (t ) , nH (t)nR]≈ln nH 0
≈Ŝ Bekenstein ,0



  

Mutual information

I H :R=S H+ S R−S HR➢ For the tripartite system:
S E

➢ Averaging over the pure states in the total system we obtain

〈 Î H :R 〉⩽
nH 0

2nE
⩽

1
2

So the average mutual information never exceeds ½ nat 
throughout the entire evaporation process



  

Η =i=1
N Η i

ρij=trΗ /Η iΗ j
ρ

〈 Î (ijk...) :( pqr...)〉⩽
nijk...

2 n pqr...
2

2n
⩽

1
2

So the average mutual information between any two “small” 
collections of subsystems in the multi-partite pure-state system 
never exceeds ½ nat as long as the rest of subsystem collection is 
dominant
[A. A-S, Matt Visser, PRA 96 (2017) 052302] 

Multi-partite entanglement 

➢ The Hilbert space is now

➢ The mutual information is given by

➢ Then, the partial traces are defined as



  

GUP IMPACT ONTO THE ENTROPY BUDGET

➢ It is possible to directly apply the Generalized uncertainty principle (GUP)

Δ xΔ p=h [1+ α2(Δ p)2]

➢We obtain a modified Hawking temperature 

➢Modification of the Hawking flux when we take into account quantum gravity 
effects (when the size approaches the Planck length)
[A. A-S, M. Dabrowski and H. Gohar, PRD 97 (2018) 044029]

α=α0

l p
ℏ

where

TGUP=T [ 1+ ( 2απ k B
c

T )
2

+O (α4)]

SGUP=S−
α2 c2m p

2 k Bπ

4
ln (

S
S0

)+ O (α4)



  

dSGUP
dN

≃
k Bπ

4

30ζ(3) [1−( α c4 )
4

( m p
2

M )
4

]➢ This leads to a modification of the entropy budget 

➢ This leads to a modification of  total number of emitted quanta

N GUP≃
30ζ(3)

π4 [ 4πm p
2 M

2
−
α

2c2m p
2
π

4
ln ( MM 0

)
2

]

The entropy budget per 
emitted particle decreases 

when the black hole 
approaches the Planck size 



  

SPARSITY OF HAWKING RADIATION

➢ Several dimensionless quantities that gave the ratio between an average time 
between the emission of two consecutive quanta and the natural time scale

   [F. Gray et al., CQG 33 (2016) 115003]

η=C
λ thermal

2

gA
≫1 where λ thermal=2πℏ c /(k BT )

➢GUP modification
λthermal

2

Aeff
|GUP=

64π3

27
M 6

[M 2−(α c4 )
2

m p
4 ln ( M

2

M 0
2 ) ] [M 2+(α c4 )

2

m p
4 ]

2

Hawking flux is no longer sparse



  

➢When we restrict attention to a particular subsystem we perceive an 
amount of entanglement entropy (a loss of information)= entropy that is 
codified in the correlations between the subsystems         no weird physical 
effects

DISCUSSION

➢ There is no “information puzzle” in burning a lump of coal          entropy 
budget = “hidden information” in the correlations          

➢ In a black hole system, we calculated the classical thermodynamics 
entropy and the Bekenstein entropy and they compensate perfectly

➢Quantum mechanically, the bipartite Page system give rise to not well-
undestood physics          new tripartite model, which quantum entropy    
completely agree with the classical expected results (and multi-partite 
extension)  

➢We have modelled the coarse-graining procedure in a quantifiable and 
controllable manner         starting point

➢We have investigated quantum gravity modifications to the entropy and 
temperature of an evaporating black hole expressed by the GUP 



  

Thank you for your attention!
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