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We Introduce 4 scalar fields in 4-D

Which will play an important geometrical

role, by the way, other authors have found

that 4 scalar fields in 4-D can be used to

define a generally covariant mass term for

the graviton . A simpler use of four

scalars in 4D is to define a new MEASURE.
Can also define this measure from the curl of a
3 index field, but we will work with the 4 scalars.




The Basic ldea of the Two
Measures Theory (TMT)

The general structure of gensral coordinate invariant theories 15 taken usually as
e =fL“-Tgrr-r. (1)

where g = det( gy, ). The introduction of /~g s required since d'z by itself is
not & sealar but the produst ~gd'r i3 a sealar. Inserting ./—g, which has the
transformation proparties of a density, produces & scalar action 5y, as definad by
Eq. (1), provided Ly 5 & scalar,

In principle, nothing prevents us from considering other densities instead of
/=, Ona construction of such alternative *measure of integration,” iz obtainaed as
follows: given 4-sealars o, (@ =1,2, 3.4}, one can constrost the density

b = EJ'”h:"ﬂ'i--:lb-:-:ll !-:IJ.I Wiz !-:IJl'r'-'EEI-:. :F:'-:B_l.:l'r"'-:! |E:



One can conslder both contributions, and allowing thersfore both geometrical
alnjects to enter the theory and take &3 our action

S=jL|¢"—_gd‘:+fLﬂd‘z. (i5)

Hara L, and L, are _ indepandent. There i3 & good resson not to consider
norlinear terms in & that mix & with /=7, for example

FX:
7 v
appear.
This is becanse S in Eq. (6) & invariant (up to the integral of a total divergence)
under the infinite-dimensional symmetry

':I"-":l_":lﬁlﬂ"'fﬂl:l"i}: [E}

whera f {Lq) is an arbitrary function of Ly if L) and Ly are ¢, independent. Such
symmetry (up to the integral of a total divergence) is ahsent if mived terms {Lke
(7)) ave present. Therefore (B is considered for the case when no dependence on
the messure fields (MF) appears in Ly ar Ly,



Softly Broken Conformal
Invariance, simple example

g, = ff.,.r.-'—_gd*;r—ff.gﬂ'dd;r.

Ly =g,

—1 {
Ly = _.RI:]--Q: T Eﬁyllﬂp':-".lul,-"— 1"'[!,-‘!: ,
fe .1

RT,g) = ¢ Ru(l), RuTi=RE,,

L

R T =Tk Tk, T T2 T

warr Mg eI UL

M



In the wvariational principle I'i,,gm., the messure fields scalars o, and the
“matter”-sealar field ¢ are all to be treated as independent variables although the
variational principle may rasut m equations that allow us to solve some of thase
variahlas in terms of others.

For the cass where the potential terms 7 = V' = 0, we have local conformal

invarianoa
Guw — T 2) G (14}
and 7, 1s transformed according to
'!Fﬂ_"!FJ:. ='!|':J:|[':I5]L}: [15}
&= =Tz}, (16)

whara Jiz] is the Jacobian of the transformation of the , fields,
This will be a symmetry In the case U =V =014

n=J. (17)

[aotles that J can be a local funetion of space-tima, this can be arrangad by par-
forming for the . fields one of the (infinite) possible diffsomorphism in the internal

s SPA0E,



Let ns study now the equations obtained from the variation of the con-
nections Tfm- We obtain then

o

5.1.
il

(22

If we define Ei‘m as E" = Fﬁ,r {w} here {;J,} is the Christoffel symbal,
we ohtain for TJ‘ the equation

_I'J-. —I'.spﬂ' gw_l_é.hrﬁu:: -I-ﬁlg“ﬁflgyw—gmﬂpgm-I-ﬁjfgrmﬂ@g‘:‘@ 5;&. — )

b e

By . o
— O Guv + Ty G — szitp - QME}:;A + Q;urEi:e + Gurfoud E:}f; =0 (23)

- — c oy —
where 5—1?11:1—?_—9_ o
The general solution of (23) is

1 -

T;j.-' = 'j.:":ll"ll-" +§[. 1 '51.-' T 13 g;_u.-'g' :I [E‘i:l

where ) is an arbitrary function due to the A - symmetry of the curvature'™
Rio(D),

[ — T;f; =0+ 8,2, (25)
Z being any scalar (which 111eans A=A+ 2).

If we choose the gange A = £, we obtain

B2 (o) = =(000, +6)0,, —0.5 9™ ). (26)



special exponential form for the [7 and V' opotentials, Indead, (£ we parform the
glohal seale transformation (§ = conat |

Gy — € G (1%}
then (9) is invariant provided V(¢ and (g} are of the form®
Vig)=fie*, U($)=foe™? (19)
and o, 18 transformed according to
Wa = Agiifs s [m]'
which means
& — detd )0 =2 (21)
such that
A=¢ (22)
and
- )

4. Spontaneously Broken Scale Invariance



Now we will solve for the scalar

_ 0
=V



ARS Ly =10, (24)
where Ab = safe 8 oyl 0. B30, Since it is easy to check that 4280, =
falp it follows that det (A%) = d=@% £ 0 if & 0. Therafore if & # 0 we obtain
that 8, Ly =10, or that

-1 1
Lq = TR(I‘,g_: - Eg“"ﬂy $lo-V=M, 125]
Constdering now the wariation with respact to ¢4 we obtain
—1 1 L .
b| —Rull)+ —¢uts | — =+ —qU (¢ gu. =0. | 31]
K 2 2
Solving for K =¢"' R, (T} from Eq. (31] and introducing in Eq. (253}, we obtam
M+ V(g) - 28 =g, (32
| v |
a canstraint that allows us to solve for y,
207 ()

To get the physical content of the theory, it s best conslder varlables that
have wel-definad dynamical interpretation. The original metric does not has &
nonzero canonical momenta, The fundamental varmable of the theory iIn the first-
arder formalism is the connection and its canonical moments i3 a funetion of J,.
givan by

Fus = X |34



To get the physical content of the theory, it is convenient to go to the
Einstein conformal frame where

T = X (30)

and y given by (29b). In terms of 7, the non Riemannian contribution X7,
dissappears from the equations, which can be written then in the Einstein

form (R,.(7,3) = usual Ricci tensor)



and y given by Eq. (33). Interastingly enough, working with §,,, is the same as going

tothe “Einstain conformal frame.” In terms of §,,, the non-Rismannian contribution

17, disappears from the equations. This s because the connection can be written
a3 the Christoffel symbel of the metric 3, In terms of §,,,, the equations of motion

far the metrie can be written then in the Einstein form (we define Rpul:ﬂ:.a_: = usual
Ricel tensor in terms of the har metric = Ry, and A = §* R

R (85) 500 Ri0a3) = STE(8). )
whera
Tarid) = r:r,,,uh——ﬂm,,r:r a0 + B Vir () (36
and
Vaple) = Hﬂ + [37]

In terms of the metrie §°F, the aquation of mation of the scalar field ¢ takes
the standard general-relativity form

—m (1T ) + Vi) =0, %)

Motiee that if V + M =0, Vig =0 and V5 = 0 also, provided V' is finite and
[F = 0 there, This means the zero cosmalogieal constant state 5 achieved without
any sort of finetuning, That 15, ndependently of whether we add to V' a constant



Effective Potential for Exponential
forms of U and V (scale invariance)
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The 2" order formulation

A similar looking action, but where we use

t
C

ne second order formulation leads to very
Ifferent results, in particular the ratio of

t

ne two measures Is not determined by a

constrained, rather

It becomes a new degree of freedom that
could play the role of a curvaton , see
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Related developments and things
that | will not cover In this talk

A related development to the Two MeasuresTheory (TMT)
IS the recently studied “Lagrange multiplier gravity” (LMG),
where a Lagrange multiplier field is introduced so as to
force some lagrangian to be zero, instead of a constant.
These two approaches are very much related, just that for
the “dictionary”, we must incorporate in the LMG the
constant of integration M into the Lagrangian that is being
forced to vanish. TMT predates LMG. A very rich subject
that | will not talk on here concerns the use of TMT or LMG
for obtaining dark matter in addition to dark energy. See for

example papers with Singleton and Yomgram and more
recently with Nissimov and Pacheva.

UNIMODULAR THEORY IN TMT FORM:



S = d4E{PL1 + d41\/—7ng

TMT form (13) is studied, where L, = and Ly = ——=(H + 2A), in the notation

lﬁ--i'rr_r 1I3-i'rG

of [6] & = 8,7, here A is taken as a dynamical variable, but the equation (as in any
TMT type theory) Ly = M = constant, forces A to be a constant, the variation of A,

gives a relation between the two measures, @ = 8,T* = \/=5. We see that of course the



6. Generation of Two Flat Regions after the
Introduction of a B* Term

Az we have seen, It I3 posslble to obtain & model that through a spontansous
breaking of seale tnvariance can give us a flat ragion, We want to obtain now two
flat regions in our effective potential, A simple generalization of the sction S wil
fix this, What one nasds to do 15 simply consider the addition of a scals invariant
tarm of the form

Smr=¢ f (¢ R (T =gtz (43)

The total action heing then § = 8¢ + Spx. 3 In the first-order formalism, Spe is
not only globaly scale invariant but also locally seale invariant, that is conformally

The wvaration of the sction with respect to ¢ gives now
— — 1 | PP —
Ryl P Ry —g | + 'I’E'i'w e 3 (eR° +U(¢))v —9gue =0, (46

It 12 interssting to notics that I we contract thes equation with ¢, the ¢ terms
do not contribute, This means that the same walue for the sealar curvature R is
obtained as in Sec, 3, f we axprass our result n terms of &, (ts derivatives and
ght . Salving the sealar eurvaturs from this and inserting in the other eindependent
aguation Lo = M, we gat stL] the same solution for the ratio of the messures which

was found in the case whare the £ tarms were absant, 1a, v = - =ir|-'ﬂ—.
A LS LIS £ TAMs were i AR X =TS T e



metric d,, given by

{ -
gj.u.l = (_—)gj.u.l = I:.:.. - EH-ER.:QJ“.... |:'i|':
v —4
Juw defines now the “Elnstein frame.” Equations (48] cen now be expressad in the
“Ematain form”
- 1 - ;
R — 50 R = T (43)
E E u L
whare
. S . ) g v 19)
haar Y- el (':',p'p,u Egpug',-:':",_ﬂg ) gj.l].l alf b |: |
v R (50)
o = m !

Here it 15 satisfied that 'Tlﬂ'l:l-': q) —ég“”ﬂmﬂ.-p— f =M, equation that exprassad
in terms of §*° bacomes = R(T,g)+(y — 26eR) 30 &g, ¢ -V = M. This allows
ns ta solve for A and we gt

po ZEV M)+ 50 g gy
1+ dede

Motiea that if we express R in terms of ¢, (8 derbvatives and ¢**, the result

iz the same as in the modal without the curvature squared term, this 15 not trose
anymare ones we axprass K in terms of ¢, its darivatives and Jov,

In any case, onee we insert (51) mto (30, wa sae that the afective potential (]
wil depend on the derivatives of the scalar field now. It acts a8 o normal scalar
hald potential under the conditions of slow rollng or low gradients and in the case
the scalar fiald is near the region M + V(¢ =0.

AFri a9

(51



Potential with 2 flat regions M<O
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For M>0, we can get a
“‘quintessential inflation” potential
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becond, for sasymptotically large but negative values of the sealar fisld, we have

., 1 .
Voglth — —50] — e |5
dER*

* Another flat region is also obtained for the
other extreme, the dilaton field goes to
plus infinity. If the constant of integration M
IS negative, there is a local minimum at
zero for the effective potential, the value
of the vacuum energy density in this

region is 0.25
. One can then CRa2veL),

get a very small vacuum enery if f 1<<f 2.




INn more detalls the Einstein frame

we see that the original metric does not have a canonically conjugated momentum (this
turns out to be zero), in contrast, the canonically conjugated momentum to the conection
turns out to be a function exclusively of g, this Einstein metric is therefore a genuine
dynamical canonical variable, as opposed to the original metric. There is also a lagrangian
formulation of the theory which uses g, as we will see in the next section, what we can
call the action in the Einstein frame. In this frame we can quantize the theory for example
and consider contributions without reference to the original frame, thus possibly considering
breking the TMT structure of the theory through quantum effects, but such breaking will
be done "softly” through the introduction of a cosmological term only. Surpringly, the
remaining structure of the theory, reminiscent from the original TMT structure will be
enough to control the strength of this additional cosmological term once we demand that

the universe originated from a non singular and stable emergent state.



SCALE INVARIANCE AND
AVOIDANCE OF 5" FORCE

Recent papers on the subject, much latter
than our contributions (but do not cite us),

No fifth force in a scale invariant universe
Pedro G. Ferreira, Christopher T.
Hill, Graham G. Ross, Phys.Rev. D95
(2017) no.6, 064038
DOI: 10.1103/PhysRevD.95.064038
e-Print; arXiv:1612.03157 [gr-qc]




Our studies of avoidance of 5t
force scale with invariance

Absence of the Fifth Force Problem in a Model with Spontaneously
Broken Dilatation Symmetry
Published in Annals Phys. 323 (2008) 866- 882

under the global scale transformations:

M
L& I i / ) R - \ . £
-rJr.l"" rE -EJ'IJ“*" rn]’ 4 ru.‘f' =9 ik o, Ya =7 'II-:.'-'J“.-'-'J |:_1 !

y I - . fsy mg .
where det(l,,) = ¢* and # = const. Keeping the general structure (2), it is convenient to

represent the action in the following form:

.l.l| |: h" I

9.
T ]' e My gl
Sy = : (D + by —q)R(T, g)e™***d x :

1
S = [ [i‘lﬁ F by fﬂ—u G udu — (PV1 + /—gVa) e | d'z

(@ + bnry/—g) Lnd 'z,


https://doi.org/10.1016/j.aop.2007.09.003
http://arxiv.org/abs/arXiv:0704.1998

where

R(T.g) = g™ (T,

A A A
e ]'_I_f.l..:ll.,!-' + ]'—Ic:.lrzu o ]'—I.-:-ul—lﬁl}

and the Lagrangian for the matter, as collection of particles, which provides the scale in-

variance of 5, reads

Z - dr® dr’’ 8% (x — z;(A))

where A is an arbitrary parameter. For simplicity we consider the collection of the particles
with the same mass parameter m. We assume in addition that x;(A) do not participate in
the scale transformations (7).

In the action (8) there are two types of the gravitational terms and of the "kinetic-

like terms” which respect the scale invariance : the terms of the one type coupled to the

measure ® and those of the other type coupled to the measure /—g.



normalization of the measure fields v, we set the coupling constant of the scalar curvature
to the measure © to be —%. Normalizing all the fields such that their couplings to the
measure ¢ have no additional factors, we are not able in general to provide the same in
terms describing the appropriate couplings to the measure /—g. This fact explains the
need to introduce the dimensionless real parameters by, by and b,. We will only assume

that they are positive, have the same or very close orders of magnitude
b, ~ by ~ b, (10)

and besides b,, > b,. The real positive parameter o is assumed to be of the order of unity.
As usual k = 167G and we use M, = (8xG)~/2.

One should also point out the possibility of introducing two different pre-potentials which
are exponential functions of the dilaton ¢ coupled to the measures ® and ,/—g with factors
V1 and V5. Such ¢-dependence provides the scale symmetry (7). We will see below how the
dilaton effective potential 1s generated as the result of S5B of the scale invariance and the
transformation to the Einstein frame.

According to the general prescriptions of TMT, we have to start from studying the self-
consistent system of gravity (metric g, and connection Tﬁﬂ], the measure ® degrees of
freedom ¢, the dilaton field ¢ and the matter particles coordinates =#(A), proceeding in

the first order formalism.



For the purpose of this paper we restrict surselves to a zero temperature gas of particles,
i.e. we will assume that dr; /dA = 0 for all particles. It is convenient to proceed in the frame

where gy = (0. [ = 1.2.3. Then the particle density is defined by

n(@) =) — (&~ () (11)

—8(=z)

where g3, = det(gu) and

S = —mfddrl[ti‘-' + bny/—g) n(Z) €70/ Ms (12)

Following the procedure described in the previous subsection we have to write down all
equations of motion, find the consistency condition (the constraint which determines (-field

as a function of other fields and matter) and make a transformation to the Einstein frame.

the ratio of the two measures

oy
1l
A
=)



We will skip most of the intermediate results and in the next subsection present the resulting
equations in the Einstein frame. Nevertheless two exclusions we have to make here.

The first one concerns the important effect observable when varving 5, with respect to

g™
*iqm b:n 1]
Gg® 2 v —gmn(F) e=*®Me o, (13)
dSm 1

Sg ‘E{I'm”(f] er®/Mo g (14)

The latter equation shows that due to the measure @, the zero temperature gas generically

possesses a pressure. As we will see this pressure disappears automatically together with the
fifth force as the matter energy density is many orders of magnitude larger then the dark
energy density, which is evidently true in all physical phenomena tested experimentally.
The second one is the notion concerning the role of Eq. (5) resulting from variation of
the measure fields ,. With the action (8), where the Lagrangian L, is the sum of terms

coupled to the measure ®, Eq. (5) describes a spontaneous breakdown of the global scale

symmetry (7).



ITI. EQUATIONS OF MOTION IN THE EINSTEIN FRAME.

It turns out that when working with the new metric (¢ remains the same)

.

G = €M (C + by) gy (15)

which we call the Einstein frame, the connection becomes Riemannian. Since g, is invari-
ant under the scale transformations (7), spontaneous breaking of the scale symmetry (bw
means of Eq.(5)) is reduced in the Einstein frame to the spontaneous breakdown of the shift
symmetry (1). Notice that the Goldstone theorem generically is not applicable in this kind
of models[37].

The transformation (15) causes the transformation of the particle density
() = (C+ by) 2 722N n(2) (16)

After the change of variables to the Einstein frame (15) and some simple algebra, the

gravitational equations take the standard GR form

- K e
Gpu{gr::,d} = =T Al {]?:]

2#—""



where (7,,(g,5) is the Einstein tensor in the Riemannian space-time with the metric g,,.

The components of the effective energy-momentum tensor are as follows

b by [
T-éf,l’:l: m(-:r_h X) {
- . , d-b 3C+ b, +2b ~
+ oo |i1"e1f{f?!lfu”] - ﬁx + Em 3 mn‘
: g
gf C+bg .
T3 = T (001 — GuX) (19)

it | Vope(d 0-b ( — b +2b,
+ Gkl |i],f”f{:p;{_.ﬁf}— {+; J{+_2 — g ]
g W g

Here the following notations have been used:

X==%o65 and bs=-2L—2 (20)

i

and the function V, i Jr(:_:'a; ¢ ] 15 defined by

b, [Mie=20¢/Ms 4 V1] — V;
Verr(dn ¢) = =
(@ C) TETAE

(21)



The dilaton ¢ field equation in the Einstein frame is as follows

1 ¢ + by i
N | —=/~35" Dt
Ui .{?{ |:C + by o
a (C+by)Miem2a8/My — (¢ — b)Vy = 2V3 — 8by(C + by) X
M, (€ + by)?
2 bty (22)

a'ifja- Eq.l'C"I‘bg

In the above equations, the scalar field { is determined as a function (¢, X, n) by means

f the following constraint (origin of which has been discussed in Sec.2.1):

(bg — ) (M1e /Mo 4 Vi) =2V 6-b,X  C — b + 2b,

— — T

(¢ + by)? ¢ + by 24/C+ by

(23)

Applying the constraint (23) to Eq.(22) one can reduce the latter to the form

1 3 E, + by i 2ag 1_—206/M
q,,-“ i MPe =% =), 24
N | T ), € - (24)

vhere ( is a solution of the constraint (23).




Omne should point out two very important features of the model. First, the ¢ dependence

in all the equations of motion (including the constraint) emerges only in the form M 1e—2ad/Mp

where M is the integration constant, i.e. due to the spontanecons breakdown of the scale
symmetry (7) (or the shift symmetry (1) in the Einstein frame). Second, the constraint (23)
15 the fifth degree algebraie equation with respect to m and therelore genercally ¢ 1s
a comphicated unction of ¢, X and n. Hence genencally each of ¢ dependent terms in s,

(18)-(22) and (24) describe very nontrivial coupling of the dilaton to the matter.

IV. DARK ENERGY IN THE ABSENCE OF MATTER

It 15 worth to start the investigation of the features of our model from the simplest case
when the particle density of the dust is zero: n(z) = 0. Then the dilaton ¢ is the only
matter which in the early universe plays the role of the inflaton while in the late universe it
15 the dark energy. The appropriate model in the context of cosmological solutions has been
studied in detail in Ref. [41]. Here we present only some of the equations we will need for
the purposes of this paper and a list of the main results,

In the absence of the matter particles, the scalar ¢ = ((¢, X) can be easily found from

the constraint (23):
Vit d-b X (25)
)
MAe2ot/Mp L V) + 8.5, X '

(a0 — b, — 2



In the spatially homogeneonus case X = 0, Then the eflective energy-momentum tensor can

be represented ina form of that of a perfect fhnad

- ) P g
."if — {P | P}Hﬂ“u = P where Uy = W {jﬁ}

with the following energy and pressure densities obtained after inserting (25) into the com-

ponents of the energy-momentum tensor (18), (19) where now ni{xz) = 0

pled, X; M) = pt*?) (27)
(MAe 200/Mp V)2 20b,(M*e 2afMp L VX — ﬂa’izhﬁﬁfz
Alby( Mte—208/Mp L Vi) — V5 ’

(Mie /My v, +{5ng]2
- A[by (M2 Mp | V) — Vi’
Substitution of (25) into Eq. (24) vields the ¢-equation with very interesting dynamics. The

plep, X; M) =p 0 = X (28)

appearance of the nonlinear X dependence in spite of the absence of such nonlinearity in
the underlving action means that our model represents an explicit example of k-essence[16]

resulting from first principles. The effective k-essence action has the form

S = [ V=i [—f;rz(ﬁ) +p (6, X; M}] , (29)

where p(d, X M) is given by FEq.(28).



In the context of spatially flat FRW cosmology, in the absence of the matter particles (i.e
n(x) = 0), the TMT model under consideration|[41| exhibits a number of interesting outputs
depending of the choice of regions in the parameter space (but without fine tuning):

a) Absence of initial singularity of the curvature while its time derivative is singular. This
15 a sort of "sudden” singularities studied by Barrow on purely kinematic grounds[44)].

h) Power law inflation in the subsequent stage of evolution. Depending on the region in
the parameter space the inflation ends with a graceful erit eather into the state with zero
cosmological constant (CC) or into the state driven by both a small CC and the field ¢ with
a quintessence-like potential.

¢) Possibility of resolution of the old CC problem. From the point of view of TMT, it be-
comes clear why the old CC problem cannot be solved (without fine tuning) in conventional
field theories.

d) TMT enables two ways for achieving small CC without fine tuning of dimensionful pa-
rameters: either by a seesaw type mechanism or due to a correspondence principle between
TMT and conventional field theories (i.e theories with only the measure of integration «/—g

in the action).



) There is a wide range of the parameters where the dynamics of the scalar field ¢, playing
the role of the dark energy in the late universe, allows crossing the phantom divide, i.e. the
equation-of-state w = p/p may be w < —1 and w asymptotically (as { — oo) approaches
—1 from below. One can show that in the original frame used in the underlying action (8),
this regime corresponds to the negative sign of the measure of integration @ -+ by /—g of the
dilaton ¢ kinetic term[51]. This dynamical effect which emerges here instead of putting the
wrong sign kinetic term by hand in the phantom model[46], will be discussed in detail n
another paper.

Taking into account that in the late time universe the X-contribution to p'{ﬂ D approaches

zero, one can see that the dark energy density 18 positive for any ¢ provided

b, Vi = V5 (30)

Then it follows from (25) that

Iﬁﬁ’ n}| e bsr

1'has wall be uselul in the next section.



V. NORMAL CONDITIONS: REPRODUCING EINSTEIN'S GIL AND ABSENCE
OF THE FIFI'H FORCE PROBLEM

One should now pay attention to the interesting result that the explicit n dependence

involving the same form of { dependence
C— by +2b,

T 71 32
24/C + by (32)

appears simultaneously[52| in the dust contribution to the pressure (through the last term

in Eq. (19)), in the effective dilaton to dust coupling (in the r.h.s. of Eq. (22)) and in the
r.h.s. of the constraint (23).

Let us analyze consequences of this wonderful coincidence in the case when the matter
energy density (modeled by dust) is much larger than the dilaton contribution to the dark
energy density in the space region occupied by this matter. vidently this is the condition

under which all tests of Finstein’s GR, including the gquestion of the fifth foree, are fulfilled.



Therefore if this condition is satisfied we will say that the matter is in normal conditions.
The existence of the fifth force turns into a problem just in normal conditions. The opposite
situation may be realized (see Refs. [31],32]) if the matter is diluted up to a magnitude
of the macroscopic energy density comparable with the dilaton contribution to the dark
energy density. In this case we say that the matter i1s in the state of cosmo-low energy
physics (CLEP). It is evident that the fifth force acting on the matter in the CLEP state
cannot be detected now and in the near future, and therefore does not appear to be a
problem. But effects of the CLEP may be important in cosmology, see Rel. [32].

The last terms in egs. (18) and (19), being the matter contributions to the energy
density (o) and the pressure (—py, ) respectively, generally speaking have the same order
of magnitude. But if the dust is in the normal conditions there is a possibility to provide
the desirable feature of the dust in GR: 1t must be pressureless. This 1s realized provided

that in normal conditions (n.c.) the following equality holds with extremely high accuracy:

I,:f?l.r!.} o~ I:'m . Ebﬁ {33}



Remind that we have assumed by, > b, Then ™) b, > 0, and the transformation (15)
and the subsequent equations in the Einstein frame are well defined. Inserting (33) in the

last term of Eq. (18) we obtain the effective dust energy density in normal conditions

pied 23 by — by min (34)

Substitution of (33) into the rest of the terms of the components of the energy-momentum
tensor (18) and (19) gives the dilaton contribution to the energy density and pressure of the
dark energy which have the orders of magnitude close to those in the absence of matter case,
Eqgs. (27) and (28). The latter statement may be easily checked by using Eqs. (25),(31),(33)
and (10].

Note that Eq. (33) is not just a choice to provide zero dust contribution to the pressure.
In fact it 15 the result of analyzing the equations of motion together with the constraint (23).

In the Appendix we present the detailed analysis vielding this result. But in this section we

have started from the use of this result in order to make the physical meaning more distinet.



Taking into account our assumption (10) and Eq. (31) we infer that (™) and (™% (in
the absence of matter case, Eq. (25)) have close orders of magnitudes. Then it is easy to see
(making use the inequality (30)) that the Lh.s. of the constraint (23), as ¢ = (™), has the
order of magnitude close to that of the dark energy density p'[ﬁ % in the absence of matter
case discussed in Sec. 4. Thus in the case under consideration, the constraint (23) deseribes
a balance between the pressure of the dust in normal conditions on the one hand and the
vacuum energy density on the other hand. This balance is realized due to the condition (33).

Besides reproducing Einstein equations when the scalar field and dust (in normal con-
ditions) are sources of the gravity, the condition (33) automatically provides a practical
disappearance of the effective dilaton to matter coupling. Indeed, inserting (33) into the
¢-equation written in the form (24) and into Vie(e: ¢), Eq. (21), one can immediately see
that only the force of the strength of the dark energy selfinteraction i1s present. in this case.
Note that this force 1s a total force involving both the selfinteraction of the dilaton and its
interaction with dust in normal conditions. Furthermore, in this way one can see explicitly
that due to the factor M'e2**Mr_ this total force may obtain an additional, exponential

dumping since in the cosmological context shortly discussed in Sec. 4 (see details in Ref.

([41])) a scenario, where in the late time universe ¢ = M, seems to be most appealing.

Another way to see the absence of the fifth force problem in the normal conditions is to



look at the ¢requation in the form (22) and estimate the Yukawa type coupling constant in
the r.h.s. of this equation. In fact, using the constraint (23) and representing the particle
density in the form n = N/v where N 1s the number of particles in a volume v, one can make
the following estimation for the effective dilaton to matter coupling "constant”™ [ defined
by the Yukawa type inferaction term fng (il we were to invent an effective action whose

variation with respect to ¢ would result in Eq. (22)):

m ¢ — by, + 2b, m § — by, + 28, X Pyae fyael!
==’ = — 2 ok
My iy My 2 bty My N,

Thus we conclude that the effective coupling "constant”™ of the dilaton to matter in the normal

J = w

(35)

conditions is of the ovder of the ralio of the "mass of the vacuum” in the volume oceupied
by the matter to the Planck mass laken N limes. In some sense this result resembles the

Archimedes law. At the same time Eq. (35) gives us an estimation of the exactness of the



conclusions

Althongh the dust model studied i this paper 18 a very crude model of matter, 1t 1s
quite sutheient for studying the hfth foree problem. In fact, all experiments which search for
the fifth foree deal with macroscopic bodies which, in the zeroth order approximation, can
be regarded as collections of noninteracting, point-like motionless particles with very high
particle number density n(z).

Generically the model studied in the present paper 1s different from Emnstein’s GR. For
example it allows the long range sealar force and a non-zero pressure of the cold dust.
However the magmtude of the particle mumber density turns ont to be the very important
factor influencing the strength of the dilaton to matter conphing. Tis happens due to the
constraint (23) which is nothing but the consistency condition of the equations of motion.
The analysis of the constraint presented in the Appendix shows that generically it describes

a balance between the matter density and dark energy density. It turns out that in the case



of a macroscopic body, that 18 in normal conditions, the constraint allows this balance only
in such a way that the dilaton practically decouples from the matter and Einstein's GR
15 restored antomatically, Thus our model not only explains why all attempts to discover
a scalar force correction to Newtoman gravity were unsuccesstul so far but also predicts
that in the near future there is no chance to detect such corrections in the astronomical
measurements as well as in the specially designed fifth force experiments on intermediate,
short (like millimeter) and even ultrashort (a few nanometer) ranges. This prediction is
alternative to predictions of other known maodels.

Formally one can consider the case of a very diluted matter when the matter energy
density 1s of the order of magnitude comparable with the dark energy density, which s
the case opposite to the normal conditions.  Only in this case the balance dictated by
the constraint implies the existence of a non small dilaton coupling to matter, as well as a
possibility of other distinetions from Einstein’s GR. However these effects cannot be detected
in hfth force experiments now and in the near future. One should also note here that in the
framework of the present model based on the consideration of point particles, the low density

limit, strictly speaking, cannot be satisfactory defined. An example of the appropriate



low density limit (CLEP state) was realized using a field theory model in Ref. [32] while
conclusions for matter in the normal conditions were very similar to results of the present
paper.

Possible cosmological and astrophysical effects when the normal conditions are not satis-
fied may be very interesting. In partienlar, taking into account that all dark matter known in
the present universe has the macroscopic energy density many orders of magnitude smaller
than the energy density of visible macroscopic bodies, we hope that the nature of the dark

matter can be understood as a state opposite to the normal conditions studied in the present
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