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B Cosmological observations confirm many aspects of ACDM.

B But some pieces in the jigsaw do not fit well.
B Extensions of the matter sector seem natural.
B The gravitational side might also need some changes.
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B CMB finds Hy = 67 while local measurements coincide in Hy = 73.
B Dynamical dark energy or new gravitational dynamics at large scales (infrared)?

B What drives the cosmic expansion?
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B Astrophysical properties of BHs have been verified.

B Conceptual problems remain: notion of singularity, Hawking radiation, ...
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B Gravitational wave astronomy and VLBI techniques pose new challenges:
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B Nature could bring in unexpected ways!

B New exact solutions are necessary to parametrize deviations from GR.
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B We must build bridges between modified gravity and GW astronomy/

numerical relativity.
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B There is hope for progress in certain families of modified theories of gravity:
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B Numerical and analytical methods can be successfully implemented in

metric-affine gravity theories
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Space-time microstructure

B If topology change could occur dynamically:
¢ The smoothness of Minkowski space disappears at Planckian scales.
® Motivations I ¢ Quantum fluctuations would lead to creation/annihilation of wormholes.
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B What kind of framework should we use to describe this scenario?
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Lessons from Condensed Matter Physics

B A microstructure with a macroscopic continuum limit is found in condensed

matter systems such as graphene or Bravais crystals.
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¢ Wave propagation on the continuum effective geometry of bilayer graphene.
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¢ Microscope image of a graphene layer with defects.
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Metric-Affine geometries do exist in Nature

B A microstructure with a macroscopic continuum limit is found in condensed

matter systems such as graphene or Bravais crystals.
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B Crystalline structures may have different kinds of defects:
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a) Interstitial impurity atom, b) Edge dislocation, c) Self interstitial atom
d) Vacancy, e) Precipitate of impurity atoms, f) Vacancy type dislocation loop,
g) Interstitial type dislocation loop, h) Substitutional impurity atom

¢ Point defects are related with non-metricity: Qguy = Vl(; g 70 .
¢ Dislocations (1D defects) generate torsion: I, # I§,
¢ Metric-affine geometry could help better understand the transition from

Quantum Gravity to classical space-time.
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Metric-Affine - Vs - Metric theories

B We will be concerned with gravity theories in which metric and connection are

a priori independent: S = [d"x,/ _gL[g.UV7ng] +Sm(8uvs Yim]

B Field equations in Palatini approach:

8S = fdn.x [\/ —& (62{;\; 2g‘u\/) 6g Hv + \V2um 616-‘%( Srg,y +65matter

8g’uv = 82% %gluv = STEGT‘U\/

8Fl3¥ = 61““ =0 (assuming no coupling of I' to the matter)
By

B Metric approach:
The relation I, = £ [Vpdgpy+ VyOgpp — Vpdgp,] implies

oA
al—woc oIy, = { go aff%v — & &%V }V;ﬁgw and leads to
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s 8L L
= Sg’uv = SeV 5 8uv = SRGT‘U\/
Conclusions
The End SFBY = 61““ =0 (assuming no coupling of I' to the matter)
By

B Metric approach:
The relation I, = & [VgSgpy+ Vydgop — Vpdgp,] implies

oA
al—woc oIy, = { go &SJ%V — & 5?% }V;ﬁgw and leads to

B The Palatini variation leads to second-order equations while the metric one
induces higher-order derivatives. See also J. Beltran and A. Delhom, 1901.08988.

Gonzalo J. Olmo 4th CANTATA Meeting, Oct. 7 — 10, Tuzla - p. 7/23




@ Motivations I

Metric-Affine Modified Gravity

@®RBG’s
@ Relating RBGs with GR
@ Examples: f(R) theories

@ Example: BI gravity

Ricci-Based Gravity theories

® Geodesics in Born-Infeld

@ Why geodesics?

@ Geodesics in f(R)

@ Scalar compact object in GR
@ Mapping into f(R)

@ Mapping into EiBI

Conclusions

The End

Gonzalo J. Olmo 4th CANTATA Meeting, Oct. 7 — 10, Tuzla - p. 8/23




@ Motivations I

Metric-Affine Modified Gravity

O RBG’s

@ Relating RBGs with GR
@ Examples: f(R) theories

@ Example: BI gravity

@ Charged BHs and WHs

@ BH remnants

@ Geodesics in Born-Infeld

@ Why geodesics?

@ Geodesics in f(R)

@ Scalar compact object in GR
@ Mapping into f(R)

@ Mapping into EiBI

Conclusions

The End

Gonzalo J. Olmo

Ricci-Based Gravity theories (RBGs)

® In GR replace g""Ry(I') = Lg[g"* Ry (T)]

¢ The connection can be solved as Levi-Civita of an auxiliary metric:

1p
g5

o

¢ The two metrics are related by: hgg = gop Qpﬁ :

¢ QPg=QPg(THy) is a nonlinear function of the matter fields.

¢ The metric field equations can be generically written as:

Gty (h) =

K2
‘Q‘l/z

[T'“V — & (L(;—|- %)] :
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Ricci-Based Gravity theories (RBGs)
® In GR replace g""Ry(I') = Lg[g"* Ry (T)]

¢ The connection can be solved as Levi-Civita of an auxiliary metric:

[op = ' (Qaltpg + oo~ dphag)

o

¢ The two metrics are related by: hgg = gop Qpﬁ :
¢ QPg=QPg(THy) is a nonlinear function of the matter fields.

¢ The metric field equations can be generically written as:

Gy(h) = e [T =86 (Lo + 3)] -

B These theories generically recover GR+A in vacuum:

¢ Only two propagating d.o.f. which travel at the speed of light.

¢ Weak-field limit satisfied (unless anomalous behavior at low curvatures).
® hyy 18 sensitive to the total energy content.

¢ g,y also feels the local energy-densities = Vl(;gyv =0 .

® QOuw = Vigw #0 generated by stress-energy densities <> crystal deffects.
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Relating RBGs with GR

B The field equations of RBGs can be put into correspondence with those of GR:

LrpG +Lm (g,uv ; \V) < R+ Z’m (Q,uv 3 \|I>
B This correspondence has been worked out for several gravity+matter models:

¢ Scalar fields: arXiv:1801.10406 [gr-qc] and arXiv:1810.04239 [gr-qc] .
¢ Anisotropic fluids / electric fields: arXiv:1807.06385 [gr-qc].
¢ Electromagnetic fields: arXiv:1907.04183 [gr-qc]

B Not something you can do on the back of an envelope!
5 = & O
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Example: f(R) theories

@ Motivations I B Consider f(R) —R_ GR2 C()llplﬁd to L, (X) =X ,with X = g,UVa‘u(l)av(l)_
¢ The map to GR leads to L,,(Z) = Z+ox?Z? , with Z = ¢*V 9,09 0.

@ Relating RBGs with GR

¢ Thus quadratic f(R) plus free scalar leads to GR plus quadratic scalar.
@ Example: BI gravity
@ Charged BHs and WHs
@ BH remnants
@ Geodesics in Born-Infeld . . 2
® Why geodesics ® Consider the map from GR with K(Z,0) =Z—2V(¢) to f(R)=R—OR
@ Geodesics in f(R)
@ Scalar compact object in GR

@ Mapping into f(R) 2y 2
@ Mapping into EiBI ’ The map IGadS tO P(X,(l)) = 1)—(8_(;51(5‘5(((')) — 1—82;/1((;1)‘)/<¢)

Conclusions

I B ¢ In the purely kinetic case: P(X) =X — ox’X?
¢ Thus GR plus free scalar leads to quadratic f(R) plus quadratic scalar.
¢ Transforming back this P(X,¢) model to GR one recovers Z — 2V ().
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Example: Born-Infeld gravity+fluids

® Let us focus on Spipr = = [ dx [\/ v +ER (| — M /——g] with a fluid

¢ In this theory |Q|%[Q_1]”

\Y

A —ex?TH, and Lgig = (|Qf2 — 1) /ex?
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Example: Born-Infeld gravity+fluids

® Let us focus on Spipr = = [ dx [\/ v +ER (| — M /——g] with a fluid

¢ In this theory |92 [Q 1, =A8! —ex?TH, and Lgp = (|Q]2 — ) /ex?

B Using the Einstein-frame variables, TH,, the deformation matrix becomes:

2 o - ~ ~ . ~
Q7] = ( -5 —Pr]) &y —ex*(p+ o)y —ex*(pr — o )EEy
B Given that g,y = hy,q[Q 1%, we find:

€Kl [x =~

guv = (1 — 5 [p — Pr]) h,uv — 81(2(6 +I5L)VMVV — SKz(ﬁr — ﬁL)&u&v

Once a solution for an anisotropic fluid is known in GR, this

generates new solutions in the Born-Infeld gravity theory.
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Example: Born-Infeld gravity+fluids

® Let us focus on Spipr = = [ dx [\/ v +ER (| — M /——g] with a fluid

¢ In this theory |92 [Q 1, =A8! —ex?TH, and Lgp = (|Q]2 — ) /ex?

B Using the Einstein-frame variables, TH,, the deformation matrix becomes:

2 o - ~ ~ . ~
Q7] = ( —5[p —Pr]) &y —ex*(p+ o)y —ex*(pr — o )EEy
B Given that g,y = hy,q[Q 1%, we find:

€Kl [x =~

guv = (1 — 5 [p — Pr]) h,uv — 81(2(6 +I5L)VMVV — SKz(ﬁr — ﬁL)&u&v

Once a solution for an anisotropic fluid is known in GR, this

generates new solutions in the Born-Infeld gravity theory.

B For a Maxwell field in GR, the mapping to Born-Infeld gravity leads to a

nonlinear electrodynamics theory of the form @(X) = 2% (1—+v1—4eX) ,
which is exactly of the Born-Infeld type!!!
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Charged BHs have wormhole structure

B In Born-Infeld gravity + spherical Maxwell electric field, the radial function

behaves as:

r(x)
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Charged BHs have wormhole structure

B In Born-Infeld gravity + spherical

behaves as:

r(
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Maxwell electric field, the radial function
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| . . . . | . . . . | X
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B ds = -—-Ax)dt-+ s—=dx~+r-(x 5 .D=4(solid), D = ashe
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B In higher dimensions the transient is more pronounced
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Curvature scalars and BH remnants

2

B Depending on 81 = , with 2 = r,le and 8. = 0.572 we have

4
2rgr,
¢ If &; > 0. = Reissner-Nordstrom like solutions.
¢ If 01 <9, = Schwarzschild like solutions.

¢ If 8; =0, = Regular solutions:
- If N; > 16 = Schwarzschild like (with black bounce).
- If N, < 16 = two Minkowskian spaces joined by a traversable wormhole.
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® Motivations | ¢ If 81 > 0, = Reissner-Nordstrom like solutions.
Metric-Affine Modified Gravity . . .
¢ If 01 <9, = Schwarzschild like solutions.
o Rt G ¢ If 8; =0, = Regular solutions:
:EEBT:“‘W - If Ny > 16 = Schwarzschild like (with black bounce).

@ Charged BHs and WHs

- If N, < 16 = two Minkowskian spaces joined by a traversable wormhole.

@ Geodesics in Born-Infeld
@ Why geodesics?

® Geodesics in fR) B Curvature scalars:
@ Scalar compact object in GR
@ Mapping into f(R) ~ | _ 1660 . 1 . 8_0 1 _ 1
@ Mapping into EiBI R(g) ~ ( 4 —I_ 352 ) 262 (1 81 (Z—])3/2 0 \/Z—l
Conclusions
8687 528 & 68,58 5.\ 1

UV 1 1 _ Oc¢ 2—9 _ Oc _

The End R[JVR (10+ 95% 382 + <1 81 ) 36%(2—1)3/2 +-.. + (1 81 ) 88%(2—1)3 oo

o N2 8887 645, ( _s_c) 2(28,-35)) ( _8_c)2 I
(R B‘uv) ~ (16+ 96% 352 + 1 81 36%(2—1)3/2 +... + 1 81 46%(2_1)3 +...
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Geodesic completeness in Born-Infeld

B The equation that governs the evolution of geodesics in this space-time is:

2 i 2
é (g—i) :Ez—veff , with VeffE (K—I— %)A(l’)
¢ Where k = 0 for null geodesics and k¥ = 1 for time-like geodesics.

¢ [? and E? are the angular momentum and energy per unit mass.
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Geodesic completeness in Born-Infeld

B The equation that governs the evolution of geodesics in this space-time is:

2 i 2
é (g—i) :E2_V€ff , with VeffE (K—I— %)A(l’)
¢ Where k = 0 for null geodesics and k¥ = 1 for time-like geodesics.

¢ [? and E? are the angular momentum and energy per unit mass.

® For null radial geodesics V,rr =0

WH case: A=A(x)

| GIR case: .)‘=.X
2
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Importance of geodesic completeness

B Geodesic completeness or curvature divergences?
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Importance of geodesic completeness

B Geodesic completeness or curvature divergences?

B Observers can suffer deformations and tidal forces.

B But they should neither be created nor destroyed.
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Importance of geodesic completeness

B Geodesic completeness or curvature divergences?

B Observers can suffer deformations and tidal forces.

B But they should neither be created nor destroyed.

B Existence is more important than suffering!
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NEDs in f(R) = R— oR?

B Asz—oo: +EMZ) Rz~ X.
B Asz—1:

I R |
FEM) ~ — e ¥ R

B Geodesically complete space.
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NEDs in f(R) = R— oR?

f(R)=R—oR? = _Pm

24— sp 15
Wormbhole Metric components |Energy density| Curvature scalars Geodesics
Case I YES if vy > 1 Divergent Finite Divergent Complete if v > 1
(6>0,<0)[NOify<1 Incomplete if v < 1
Case 11 NO Finite Divergent Finite Incomplete
(0 >0,8>0)
Incomplete? if §; > s
Case II1 NO Divergent if §1 # 5&” Finite Divergent if §1 # 59) Complete if 1 = 5&7)
(0 <0,8<0) Finite if & = 60" Finite if §; = 6 (de Sitter core)
Incomplete if §1 < 5
Case IV YES Divergent Finite Divergent Complete
(0 <0,8>0)

Table [. Summary of the features of the four families of configurations studied in Sec[V](the case {o > 0,3 < 0} with v = 1 hides
some peculiarities, see Sec. so it is not contained in this table). The metric components, energy density and curvature
scalars refers to the behaviour at the wormhole throat (when it exists) or otherwise at the innermost region of the solutions.
Incomplete geodesics refer to the existence of (at least) a single incomplete null or timelike geodesic curve. The breakdown of
the correlations among these three concepts is clear.

In GR geodesic incompleteness occurs simultaneously with curvature and matter
divergences. This degeneracy is broken beyond GR.
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Scalar compact object in GR

B Wyman (PRD24,1981) obtained an exact,
asymptotically flat, free scalar field solution:

L 4 ds%;R = —eVdt? + Vi/_\i‘dyz 4+ #(a’@z 4+ Sinezd(pz) Log[p[y]]
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Scalar compact object in GR

B Wyman (PRD24,1981) obtained an exact,
asymptotically flat, free scalar field solution:

¢ dsgr=—e'dr’+ %dyz + # (d®” +sin62d?)
¢ Here Llp = 0 becomes ¢y, =0 = ¢ = y.
o & =eP | W=ePY2sinh(yy)/y,

* y=./P?>+2k%/2 and B=-2M .

B Properties of this solution:

¢ The far limitis y — 0, where W ~ y.

¢ Energy density concentrated inside the
Scharzschild radius.

¢ No event horizon but an ISCO at ~ 3M.

¢ Geodesics reach the center in finite affine time.

¢ Strong curvature divergence at the center.
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Mapping the scalar field into f(R)

B The new solution looks like:

2 1 2
¢ dspr) = Rz 9Sor

¢ Here Z=W4* "V and fg = 1/(1 +20x°Z).

¢ Two families of solutions depending on G.
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¢ Here Z=W4* "V and fg = 1/(1 +20x°Z).

® Relating RBGs with GR ¢ Two families of solutions depending on G.
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Mapping the scalar field into f(R)

B The new solution looks like:

2 . 1 2
¢ dspr) = Rz 9Sor

¢ Here Z=W4* "V and fg = 1/(1 +20x°Z).
¢ Two families of solutions depending on G.
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Mapping the scalar field into EiBI

B The solution looks pretty much like the GR one:
dsk, = —"df® + ( e’ a@) dy? + b (d62 + sin82dg?)
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B [nGR R~ e\Bly while in EiBI with € < 0 we have R ~ B
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B Metric-affine geometry naturaly arises in condensed matter systems:

® Mojivations I ¢ Nonmetricity and torsion arise due to the existence of structural defects.
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¢ Important technical progress = established numerical methods applicable.
¢ New solutions can be generated out of known ones = new phenomenology.

¢ Degeneracies btwn modified gravity and GR with exotic sources may arise.
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@ Summary and Conclusions

B Ricci-Based Gravity theories (RBGs) in the Palatini formulation:

The End

¢ Important technical progress = established numerical methods applicable.
¢ New solutions can be generated out of known ones = new phenomenology.

¢ Degeneracies btwn modified gravity and GR with exotic sources may arise.

B Conclusion:

There might be more exotic compact objects than our imagination

can grasp. Generating new solutions may help us parametrize the

space of potential deviations and their implications
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