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Motivations

■ Cosmological observations confirm many aspects of ΛCDM.

■ But some pieces in the jigsaw do not fit well.

■ Extensions of the matter sector seem natural.

■ The gravitational side might also need some changes.
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Motivations

■ CMB finds H0 = 67 while local measurements coincide in H0 = 73.

■ Dynamical dark energy or new gravitational dynamics at large scales (infrared)?

■ What drives the cosmic expansion?
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Motivations

■ Astrophysical properties of BHs have been verified.

■ Conceptual problems remain: notion of singularity, Hawking radiation, ...
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Motivations

■ Gravitational wave astronomy and VLBI techniques pose new challenges:
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Motivations

■ Gravitational wave astronomy and VLBI techniques pose new challenges:

■ Nature could bring surprises in unexpected ways!

■ New exact solutions are necessary to parametrize deviations from GR.
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Motivations

■ Going beyond GR is a computational challenge:

■ We must build bridges between modified gravity and GW astronomy/

numerical relativity.
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Motivations

■ There is hope for progress in certain families of modified theories of gravity:

■ Numerical and analytical methods can be successfully implemented in

metric-affine gravity theories
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Metric-Affine Modified Gravity
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Space-time microstructure

■ If topology change could occur dynamically:

◆ The smoothness of Minkowski space disappears at Planckian scales.

◆ Quantum fluctuations would lead to creation/annihilation of wormholes.

◆ Fluxes through wormholes appear as pairs of elementary particles.
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Space-time microstructure

■ If topology change could occur dynamically:

◆ The smoothness of Minkowski space disappears at Planckian scales.

◆ Quantum fluctuations would lead to creation/annihilation of wormholes.

◆ Fluxes through wormholes appear as pairs of elementary particles.

■ What kind of framework should we use to describe this scenario?
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Lessons from Condensed Matter Physics

■ A microstructure with a macroscopic continuum limit is found in condensed

matter systems such as graphene or Bravais crystals.

◆ Wave propagation on the continuum effective geometry of bilayer graphene.
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Lessons from Condensed Matter Physics

■ A microstructure with a macroscopic continuum limit is found in condensed

matter systems such as graphene or Bravais crystals.

◆ Microscope image of a graphene layer with defects.
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Metric-Affine geometries do exist in Nature

■ A microstructure with a macroscopic continuum limit is found in condensed

matter systems such as graphene or Bravais crystals.

■ Crystalline structures may have different kinds of defects:

◆ Point defects are related with non-metricity: Qαµν = ∇Γ
αgµν 6= 0 .

◆ Dislocations (1D defects) generate torsion: Γα
µν 6= Γα

νµ

◆ Metric-affine geometry could help better understand the transition from

Quantum Gravity to classical space-time.
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Metric-Affine - Vs - Metric theories

■ We will be concerned with gravity theories in which metric and connection are

a priori independent: S =
∫

dnx
√−gL[gµν,Γ

α
βγ]+Sm[gµν,ψm]
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Metric-Affine - Vs - Metric theories

■ We will be concerned with gravity theories in which metric and connection are

a priori independent: S =
∫

dnx
√−gL[gµν,Γ

α
βγ]+Sm[gµν,ψm]

■ Field equations in Palatini approach:

δS =
∫

dnx

[√−g
(

δL
δgµν − L

2
gµν

)

δgµν +
√−g δL

δΓα
βγ

δΓα
βγ

]

+δSmatter

δgµν ⇒ δL
δgµν − L

2
gµν = 8πGTµν

δΓα
βγ ⇒ δL

δΓα
βγ

= 0 (assuming no coupling of Γ to the matter)
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Metric-Affine - Vs - Metric theories

■ We will be concerned with gravity theories in which metric and connection are

a priori independent: S =
∫

dnx
√−gL[gµν,Γ

α
βγ]+Sm[gµν,ψm]

■ Field equations in Palatini approach:

δS =
∫

dnx

[√−g
(

δL
δgµν − L

2
gµν

)

δgµν +
√−g δL

δΓα
βγ

δΓα
βγ

]

+δSmatter

δgµν ⇒ δL
δgµν − L

2
gµν = 8πGTµν

δΓα
βγ ⇒ δL

δΓα
βγ

= 0 (assuming no coupling of Γ to the matter)

■ Metric approach:

The relation δΓα
βγ =

gαρ

2

[

∇βδgργ +∇γδgρβ −∇ρδgβγ

]

implies

δL
δΓα

βγ
δΓα

βγ =
{

gαµ δL
δΓα

λν
− gαλ

2
δL

δΓα
µν

}

∇λδgµν and leads to

δgµν ⇒
(

δL
δgµν − L

2 gµν

)

+∇λ

[

gγν
δL

δΓ
µ

λγ

−gβµgγνgαλ δL
δΓα

βγ

]

= 8πGTµν
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Metric-Affine - Vs - Metric theories

■ We will be concerned with gravity theories in which metric and connection are

a priori independent: S =
∫

dnx
√−gL[gµν,Γ

α
βγ]+Sm[gµν,ψm]

■ Field equations in Palatini approach:

δS =
∫

dnx

[√−g
(

δL
δgµν − L

2
gµν

)

δgµν +
√−g δL

δΓα
βγ

δΓα
βγ

]

+δSmatter

δgµν ⇒ δL
δgµν − L

2
gµν = 8πGTµν

δΓα
βγ ⇒ δL

δΓα
βγ

= 0 (assuming no coupling of Γ to the matter)

■ Metric approach:

The relation δΓα
βγ =

gαρ

2

[

∇βδgργ +∇γδgρβ −∇ρδgβγ

]

implies

δL
δΓα

βγ
δΓα

βγ =
{

gαµ δL
δΓα

λν
− gαλ

2
δL

δΓα
µν

}

∇λδgµν and leads to

δgµν ⇒
(

δL
δgµν − L

2 gµν

)

+∇λ

[

gγν
δL

δΓ
µ

λγ

−gβµgγνgαλ δL
δΓα

βγ

]

= 8πGTµν

■ The Palatini variation leads to second-order equations while the metric one

induces higher-order derivatives. See also J. Beltrán and A. Delhom, 1901.08988.
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Ricci-Based Gravity theories
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Ricci-Based Gravity theories (RBGs)

■ In GR replace gµνRµν(Γ) ⇒ LG[g
µαR(αν)(Γ)]

◆ The connection can be solved as Levi-Civita of an auxiliary metric:

Γ
µ

αβ
= hµρ

2

(

∂αhρβ +∂βhρα −∂ρhαβ

)

.

◆ The two metrics are related by: hαβ = gαρΩρ
β .

◆ Ωρ
β = Ωρ

β(T
µ

ν) is a nonlinear function of the matter fields.

◆ The metric field equations can be generically written as:

Gµ
ν(h) =

κ2

|Ω|1/2

[

T µ
ν −δ

µ
ν

(

LG + T
2

)]

.
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Ricci-Based Gravity theories (RBGs)

■ In GR replace gµνRµν(Γ) ⇒ LG[g
µαR(αν)(Γ)]

◆ The connection can be solved as Levi-Civita of an auxiliary metric:

Γ
µ

αβ
= hµρ

2

(

∂αhρβ +∂βhρα −∂ρhαβ

)

.

◆ The two metrics are related by: hαβ = gαρΩρ
β .

◆ Ωρ
β = Ωρ

β(T
µ

ν) is a nonlinear function of the matter fields.

◆ The metric field equations can be generically written as:

Gµ
ν(h) =

κ2

|Ω|1/2

[

T µ
ν −δ

µ
ν

(

LG + T
2

)]

.

■ These theories generically recover GR+Λ in vacuum:

◆ Only two propagating d.o.f. which travel at the speed of light.

◆ Weak-field limit satisfied (unless anomalous behavior at low curvatures).

◆ hµν is sensitive to the total energy content.

◆ gµν also feels the local energy-densities ⇒ ∇Γ
αgµν 6= 0 .

◆ Qαµν = ∇Γ
αgµν 6= 0 generated by stress-energy densities ↔ crystal deffects.
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Relating RBGs with GR

■ The field equations of RBGs can be put into correspondence with those of GR:

LRBG +Lm(gµν,ψ) ⇔ R+ L̃m(qµν,ψ)
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Relating RBGs with GR

■ The field equations of RBGs can be put into correspondence with those of GR:

LRBG +Lm(gµν,ψ) ⇔ R+ L̃m(qµν,ψ)

■ This correspondence has been worked out for several gravity+matter models:

◆ Scalar fields: arXiv:1801.10406 [gr-qc] and arXiv:1810.04239 [gr-qc] .

◆ Anisotropic fluids / electric fields: arXiv:1807.06385 [gr-qc].

◆ Electromagnetic fields: arXiv:1907.04183 [gr-qc]



● Motivations I

Metric-Affine Modified Gravity

RBGs

● RBG’s

● Relating RBGs with GR

● Examples: f(R) theories

● Example: BI gravity

● Charged BHs and WHs

● BH remnants

● Geodesics in Born-Infeld

● Why geodesics?

● Geodesics in f(R)

● Scalar compact object in GR

● Mapping into f (R)

● Mapping into EiBI

Conclusions

The End

Gonzalo J. Olmo 4th CANTATA Meeting, Oct. 7−10, Tuzla - p. 10/23

Relating RBGs with GR

■ The field equations of RBGs can be put into correspondence with those of GR:

LRBG +Lm(gµν,ψ) ⇔ R+ L̃m(qµν,ψ)

■ This correspondence has been worked out for several gravity+matter models:

◆ Scalar fields: arXiv:1801.10406 [gr-qc] and arXiv:1810.04239 [gr-qc] .

◆ Anisotropic fluids / electric fields: arXiv:1807.06385 [gr-qc].

◆ Electromagnetic fields: arXiv:1907.04183 [gr-qc]

■ Not something you can do on the back of an envelope!
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Example: f (R) theories

■ Consider f (R) = R−σR2 coupled to Lm(X) = X , with X = gµν∂µφ∂νφ.

◆ The map to GR leads to L̃m(Z) = Z +σκ2Z2 , with Z = qµν∂µφ∂νφ.

◆ Thus quadratic f (R) plus free scalar leads to GR plus quadratic scalar.
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Example: f (R) theories

■ Consider f (R) = R−σR2 coupled to Lm(X) = X , with X = gµν∂µφ∂νφ.

◆ The map to GR leads to L̃m(Z) = Z +σκ2Z2 , with Z = qµν∂µφ∂νφ.

◆ Thus quadratic f (R) plus free scalar leads to GR plus quadratic scalar.

■ Consider the map from GR with K(Z,φ) = Z −2V (φ) to f (R) = R−σR2

◆ The map leads to P(X ,φ) = X−σκ2X2

1−8σκ2V (φ)
− 2V (φ)

1−8σκ2V (φ)

◆ In the purely kinetic case: P(X) = X −σκ2X2

◆ Thus GR plus free scalar leads to quadratic f (R) plus quadratic scalar.

◆ Transforming back this P(X ,φ) model to GR one recovers Z −2V (φ).
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Example: Born-Infeld gravity+fluids

■ Let us focus on SEiBI =
1

κ2ε

∫
d4x

[√

|gµν + εR(µν)|−λ
√−g

]

with a fluid

◆ In this theory |Ω̂| 1
2 [Ω−1]µν = λδ

µ
ν − εκ2T µ

ν and LEiBI = (|Ω̂| 1
2 −λ)/εκ2
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Example: Born-Infeld gravity+fluids

■ Let us focus on SEiBI =
1

κ2ε

∫
d4x

[√

|gµν + εR(µν)|−λ
√−g

]

with a fluid

◆ In this theory |Ω̂| 1
2 [Ω−1]µν = λδ

µ
ν − εκ2T µ

ν and LEiBI = (|Ω̂| 1
2 −λ)/εκ2

■ Using the Einstein-frame variables, T̃ µ
ν, the deformation matrix becomes:

[Ω−1]µν =
(

1− εκ2

2 [ρ̃− p̃r]
)

δµ
ν − εκ2(ρ̃+ p̃⊥)vµvν − εκ2( p̃r − p̃⊥)ξµξν

■ Given that gµν = hµα[Ω
−1]αν, we find:

gµν =
(

1− εκ2

2 [ρ̃− p̃r]
)

hµν − εκ2(ρ̃+ p̃⊥)vµvν − εκ2( p̃r − p̃⊥)ξµξν

Once a solution for an anisotropic fluid is known in GR, this

generates new solutions in the Born-Infeld gravity theory.
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Example: Born-Infeld gravity+fluids

■ Let us focus on SEiBI =
1

κ2ε

∫
d4x

[√

|gµν + εR(µν)|−λ
√−g

]

with a fluid

◆ In this theory |Ω̂| 1
2 [Ω−1]µν = λδ

µ
ν − εκ2T µ

ν and LEiBI = (|Ω̂| 1
2 −λ)/εκ2

■ Using the Einstein-frame variables, T̃ µ
ν, the deformation matrix becomes:

[Ω−1]µν =
(

1− εκ2

2 [ρ̃− p̃r]
)

δµ
ν − εκ2(ρ̃+ p̃⊥)vµvν − εκ2( p̃r − p̃⊥)ξµξν

■ Given that gµν = hµα[Ω
−1]αν, we find:

gµν =
(

1− εκ2

2 [ρ̃− p̃r]
)

hµν − εκ2(ρ̃+ p̃⊥)vµvν − εκ2( p̃r − p̃⊥)ξµξν

Once a solution for an anisotropic fluid is known in GR, this

generates new solutions in the Born-Infeld gravity theory.

■ For a Maxwell field in GR, the mapping to Born-Infeld gravity leads to a

nonlinear electrodynamics theory of the form ϕ(X) = 1
2ε

(

1−
√

1−4εX
)

,

which is exactly of the Born-Infeld type!!!
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Charged BHs have wormhole structure
■ In Born-Infeld gravity + spherical Maxwell electric field, the radial function

behaves as:

-3 -2 -1 1 2 3
x

0.5

1.0

1.5

2.0

2.5

3.0
rHxL

■ ds2 =−A(x)dt2 + 1
B(x)

dx2 + r2(x)dΩ2
D−2
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Charged BHs have wormhole structure
■ In Born-Infeld gravity + spherical Maxwell electric field, the radial function

behaves as:

-3 -2 -1 1 2 3
x

0.5

1.0

1.5

2.0

2.5

3.0
rHxL

■ ds2 =−A(x)dt2 + 1
B(x)

dx2 + r2(x)dΩ2
D−2 . D = 4 (solid), D = 7 (dashed)

■ In higher dimensions the transient is more pronounced
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Curvature scalars and BH remnants

■ Depending on δ1 =
r2

q

2rSrc
, with r2

c = rqlε and δc = 0.572 we have

◆ If δ1 > δc ⇒ Reissner-Nordstrom like solutions.

◆ If δ1 < δc ⇒ Schwarzschild like solutions.

◆ If δ1 = δc ⇒ Regular solutions:

- If Nq > 16 ⇒ Schwarzschild like (with black bounce).

- If Nq < 16 ⇒ two Minkowskian spaces joined by a traversable wormhole.



● Motivations I

Metric-Affine Modified Gravity

RBGs

● RBG’s

● Relating RBGs with GR

● Examples: f(R) theories

● Example: BI gravity

● Charged BHs and WHs

● BH remnants

● Geodesics in Born-Infeld

● Why geodesics?

● Geodesics in f(R)

● Scalar compact object in GR

● Mapping into f (R)

● Mapping into EiBI

Conclusions

The End

Gonzalo J. Olmo 4th CANTATA Meeting, Oct. 7−10, Tuzla - p. 14/23

Curvature scalars and BH remnants

■ Depending on δ1 =
r2

q

2rSrc
, with r2

c = rqlε and δc = 0.572 we have

◆ If δ1 > δc ⇒ Reissner-Nordstrom like solutions.

◆ If δ1 < δc ⇒ Schwarzschild like solutions.

◆ If δ1 = δc ⇒ Regular solutions:

- If Nq > 16 ⇒ Schwarzschild like (with black bounce).

- If Nq < 16 ⇒ two Minkowskian spaces joined by a traversable wormhole.

■ Curvature scalars:

R(g)≈
(

−4+ 16δc
3δ2

)

− 1
2δ2

(

1− δc
δ1

)[

1

(z−1)3/2 −O
(

1√
z−1

)]

RµνRµν ≈
(

10+
86δ2

1

9δ2
2

− 52δ1
3δ2

)

+
(

1− δc
δ1

)

[

6δ2−5δ1

3δ2
2(z−1)3/2 + . . .

]

+
(

1− δc
δ1

)2
[

1

8δ2
2(z−1)3 − . . .

]

(Rα
βµν)

2 ≈
(

16+
88δ2

1

9δ2
2

− 64δ1
3δ2

)

+
(

1− δc
δ1

)

[

2(2δ1−3δ2)

3δ2
2(z−1)3/2 + . . .

]

+
(

1− δc
δ1

)2
[

1

4δ2
2(z−1)3 + . . .

]
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Geodesic completeness in Born-Infeld
■ The equation that governs the evolution of geodesics in this space-time is:

1
σ2
+

(

dx
dλ

)2
= E2 −Ve f f , with Ve f f ≡

(

κ+ L2

r2

)

A(r) .

◆ Where κ = 0 for null geodesics and κ = 1 for time-like geodesics.

◆ L2 and E2 are the angular momentum and energy per unit mass.
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Geodesic completeness in Born-Infeld
■ The equation that governs the evolution of geodesics in this space-time is:

1
σ2
+

(

dx
dλ

)2
= E2 −Ve f f , with Ve f f ≡

(

κ+ L2

r2

)

A(r) .

◆ Where κ = 0 for null geodesics and κ = 1 for time-like geodesics.

◆ L2 and E2 are the angular momentum and energy per unit mass.

■ For null radial geodesics Ve f f = 0
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Importance of geodesic completeness

■ Geodesic completeness or curvature divergences?
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Importance of geodesic completeness

■ Geodesic completeness or curvature divergences?

■ Observers can suffer deformations and tidal forces.

■ But they should neither be created nor destroyed.
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Importance of geodesic completeness

■ Geodesic completeness or curvature divergences?

■ Observers can suffer deformations and tidal forces.

■ But they should neither be created nor destroyed.

■ Existence is more important than suffering!
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NEDs in f (R) = R−σR2

■ As z → ∞: ±Eλ(z)≈ z ≈ x .

■ As z → 1:

±Eλ(z)≈− 1√
2α+2

√
z−1

≈− 1
|x̃| .

■ Geodesically complete space.
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NEDs in f (R) = R−σR2

In GR geodesic incompleteness occurs simultaneously with curvature and matter

divergences. This degeneracy is broken beyond GR.
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Scalar compact object in GR

■ Wyman (PRD24,1981) obtained an exact,

asymptotically flat, free scalar field solution:

◆ ds2
GR =−eνdt2 + eν

W 4 dy2 + 1
W 2 (dθ2 + sinθ2dϕ2)

◆ Here �φ = 0 becomes φyy = 0 ⇒ φ = y.

◆ eν = eβy , W = eβy/2 sinh(γy)/γ ,

◆ γ ≡
√

β2 +2κ2/2 and β =−2M .
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Scalar compact object in GR

■ Wyman (PRD24,1981) obtained an exact,

asymptotically flat, free scalar field solution:

◆ ds2
GR =−eνdt2 + eν

W 4 dy2 + 1
W 2 (dθ2 + sinθ2dϕ2)

◆ Here �φ = 0 becomes φyy = 0 ⇒ φ = y.

◆ eν = eβy , W = eβy/2 sinh(γy)/γ ,

◆ γ ≡
√

β2 +2κ2/2 and β =−2M .

■ Properties of this solution:

◆ The far limit is y → 0 , where W ≈ y.

◆ Energy density concentrated inside the

Scharzschild radius.

◆ No event horizon but an ISCO at ∼ 3M.

◆ Geodesics reach the center in finite affine time.

◆ Strong curvature divergence at the center.
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Mapping the scalar field into f (R)

■ The new solution looks like:

◆ ds2
f (R) =

1
fR(Z)

ds2
GR

◆ Here Z =W 4e−ν and fR = 1/(1+2σκ2Z).

◆ Two families of solutions depending on σ.
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Mapping the scalar field into f (R)

■■ The new solution looks like:

◆ ds2
f (R) =

1
fR(Z)

ds2
GR

◆ Here Z =W 4e−ν and fR = 1/(1+2σκ2Z).

◆ Two families of solutions depending on σ.

■ For σ < 0 we find a wormhole.
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Mapping the scalar field into f (R)

■ The new solution looks like:

◆ ds2
f (R) =

1
fR(Z)

ds2
GR

◆ Here Z =W 4e−ν and fR = 1/(1+2σκ2Z).

◆ Two families of solutions depending on σ.

■■ For σ > 0 no wormhole appears.

σ < 0 yields a wormhole.
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Mapping the scalar field into f (R)

■ The new solution looks like:

◆ ds2
f (R) =

1
fR(Z)

ds2
GR

◆ Here Z =W 4e−ν and fR = 1/(1+2σκ2Z).

◆ Two families of solutions depending on σ.

Radial Functions Energy density
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Mapping the scalar field into EiBI

■■ The solution looks pretty much like the GR one:

ds2
GR =−eνdt2 +

(

eν

W 4 − εκ2
)

dy2 + 1
W 2 (dθ2 + sinθ2dϕ2)

◆ GR is recovered when ε → 0.

◆ Two families of solutions depending on the sign of ε.

◆ ε < 0 is specially interesting.
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Mapping the scalar field into EiBI

■ The solution looks pretty much like the GR one:

ds2
GR =−eνdt2 +

(

eν

W 4 − εκ2
)

dy2 + 1
W 2 (dθ2 + sinθ2dϕ2)

◆ GR is recovered when ε → 0.

◆ Two families of solutions depending on the sign of ε.

◆ ε < 0 is specially interesting.

Effective Energy Density −Gt
t Canonical Energy Density −T t

t
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Mapping the scalar field into EiBI

■ The solution looks pretty much like the GR one:

ds2
GR =−eνdt2 +

(

eν

W 4 − εκ2
)

dy2 + 1
W 2 (dθ2 + sinθ2dϕ2)

◆ GR is recovered when ε → 0.

◆ Two families of solutions depending on the sign of ε.

◆ ε < 0 is specially interesting.

Ricci Scalar Radial Null Geodesics

■ In GR R ∼ e|β|y , while in EiBI with ε < 0 we have R ∼ e
κ2y

|β| .
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Summary and Conclusions
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Summary and Conclusions

■ Metric-affine geometry naturaly arises in condensed matter systems:

◆ Nonmetricity and torsion arise due to the existence of structural defects.

◆ A nontrivial connection may provide extra freedom to describe the

transient from the Quantum Gravity regime to classical geometry.
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Summary and Conclusions

■ Metric-affine geometry naturaly arises in condensed matter systems:

◆ Nonmetricity and torsion arise due to the existence of structural defects.

◆ A nontrivial connection may provide extra freedom to describe the

transient from the Quantum Gravity regime to classical geometry.

■ Ricci-Based Gravity theories (RBGs) in the Palatini formulation:

◆ Important technical progress ⇒ established numerical methods applicable.

◆ New solutions can be generated out of known ones ⇒ new phenomenology.

◆ Degeneracies btwn modified gravity and GR with exotic sources may arise.
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Summary and Conclusions

■ Metric-affine geometry naturaly arises in condensed matter systems:

◆ Nonmetricity and torsion arise due to the existence of structural defects.

◆ A nontrivial connection may provide extra freedom to describe the

transient from the Quantum Gravity regime to classical geometry.

■ Ricci-Based Gravity theories (RBGs) in the Palatini formulation:

◆ Important technical progress ⇒ established numerical methods applicable.

◆ New solutions can be generated out of known ones ⇒ new phenomenology.

◆ Degeneracies btwn modified gravity and GR with exotic sources may arise.

■ Conclusion:

There might be more exotic compact objects than our imagination

can grasp. Generating new solutions may help us parametrize the

space of potential deviations and their implications
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Thanks !!!
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