Compact Objects in Gravity Theories

Jutta Kunz

Institute of Physics CvO University Oldenburg

Introduction

Neutron StarsGRBeyond GR

Black Holes

Conclusions

- 2 Neutron Stars• GR
 - \bullet Beyond GR

3 Black Holes

Conclusions

- 2 Neutron Stars• GR
 - \bullet Beyond GR

3 Black Holes

- 2 Neutron Stars • GR
 - Beyond GR

3 Black Holes

Introduction

Neutron StarsGRBeyond GR

3 Black Holes

4 Conclusions

Introduction

General Relativity

- Incompatibility with Quantum Mechanics
- Singularities
- Dark Matter, Dark Energy
- ...

Introduction

GR or Alternative Theories of Gravity

- Scalar-tensor theories
- f(R) theories
- Quadratic gravity (EsGB, CS, ...)

• ...

Introduction

GR or Alternative Theories of Gravity

- Scalar-tensor theories
- f(R) theories
- Quadratic gravity (EsGB, CS, ...)

• ...

Introduction

GR or Alternative Theories of Gravity

- Compatible with all solar system tests!
- Observational consequences: strong gravity?
 - Neutron stars
 - Black holes
 - Exotic objects

1 Introduction

- 2 Neutron Stars• GR
 - \bullet Beyond GR

3 Black Holes

4 Conclusions

Introduction

2 Neutron Stars
• GR
• Beyond GR

3 Black Holes

4 Conclusions

Neutron stars

What is the equation of state?

Jutta Kunz (Universität Oldenburg)

Compact Objects...

Neutron Stars GR

Neutron stars

Jutta Kunz (Universität Oldenburg)

Compact Objects...

Neutron stars

Relations between neutron star properties, that are to a large extent independent of the neutron star's internal structure (EOS).

- $\bullet\,$ moment of interia I
- \bullet quadrupole moment Q
- Love number
- ...

• quasi-normal modes: asteroseismology

no exact relations, but valid at the (few) percent level

Yagi and Yunes I-Love-Q

$Q \stackrel{(\text{spin-induced})}{\text{quadrupole moment}}$

moment of inertia

 λ_2 tidal Love number (tidal deformability)

Yagi et al. 1302.4499, 1608.02582

Yagi et al. 1302.4499, 1608.02582

Yagi et al. 1608.02582, 1312.4532

three hair relations: relativistic results

Blazquez-Salcedo et al. arXiv:1307.1063

quasi-normal modes: polar (parity even) $\omega = \omega_R + i\omega_I$, frequency ω_R , damping time $\tau = 1/\omega_I$

universal $\omega_R R - M/R$ relation

Blazquez-Salcedo et al. arXiv:1307.1063

quasi-normal modes: polar (parity even) $\omega = \omega_R + i\omega_I$, frequency ω_R , damping time $\tau = 1/\omega_I$

universal $M\omega_I - M/R$ relation

Introduction

- 2 Neutron Stars• GR
 - \bullet Beyond GR

3 Black Holes

Conclusions

action: Jordan frame

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{-\tilde{g}} \left[F(\Phi)\tilde{\mathcal{R}} - Z(\Phi)\tilde{g}^{\mu\nu}\partial_\mu \Phi \partial_\nu \Phi - 2U(\Phi) \right] + S_m \left[\Psi_m; \tilde{g}_{\mu\nu} \right]$$

action: Einstein frame

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{-g} \left[\mathcal{R} - 2g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - 4V(\varphi) \right] + S_m [\Psi_m; \mathcal{A}^2(\varphi)g_{\mu\nu}]$$

relations between the Jordan frame functions $F(\Phi)$ and $U(\Phi)$ and the Einstein frame functions $A(\varphi)$ and $V(\varphi)$

$$A(\varphi) = F^{-1/2}(\Phi) , \qquad 2V(\varphi) = U(\Phi)F^{-2}(\Phi)$$

VOLUME 70, NUMBER 15 PHYSICAL REVIEW LETTERS

Nonperturbative Strong-Field Effects in Tensor-Scalar Theories of Gravitation

Thibault Damour

Institut des Hautes Etudes Scientifiques, 91440 Bures sur Yvette, France and Département d'Astrophysique Relativiste et de Cosmologie, Observatoire de Paris, Centre National de la Recherche Scientifique, 92195 Meudon, France

Gilles Esposito-Farèse Centre de Physique Théorique, Centre National de la Recherche Scientifique, Luminy, Case 907, 13288 Marseille CEDEX 9. France

"spontaneous scalarization"

Doneva et al. 1309.0605

spontaneous scalarization: static and Kepler limit

Pani et al. 1405.4547, Yagi et al. 1608.02582

Pani et al. 1405.4547, Yagi et al. 1608.02582

Motahar et al. arXiv:1807.02598

axial (odd parity) quasi-normal modes: $M\omega_I - M\omega_R$ ($\beta_0 = -4.5$)

Motahar et al. arXiv:1902.01277

axial (odd parity) quasi-normal modes: $M\omega_I - M\omega_R$ ($\beta_0 = -6$)

Horndeski gravity

second-order field equations and one scalar field

$$\begin{split} S &= \int d^4 x \sqrt{-g} \Big\{ K(\phi,X) - G_3(\phi,X) \Box \phi \\ &+ G_4(\phi,X) R + G_{4,X}(\phi,X) \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi) \right] \\ &+ G_5(\phi,X) G_{\mu\nu} \nabla^\mu \nabla^\nu \phi - \frac{G_{5,X}(\phi,X)}{6} \left[(\Box \phi)^3 - 3 \Box \phi (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi) \right. \\ &+ 2 (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla_\sigma \phi) (\nabla^\nu \nabla^\sigma \phi) \right] \Big\} \,, \end{split}$$

K and G_i 's (i = 1...5):

functions of the scalar field ϕ and of its kinetic term $X=-1/2\partial^{\mu}\phi\partial_{\mu}\phi$ $G_{i,X}$:

derivatives of G_i with respect to X

Charmousis et al. 1106.2000, 1112.4866 subsector: Fab Four

special cases of Horndeski gravity

- general relativity ("George")
- Einstein-dilaton-Gauss-Bonnet gravity ("Ringo")
- theories with a nonminimal coupling with the Einstein tensor ("John")
- theories involving the double-dual of the Riemann tensor ("Paul")

Blazquez-Salcedo et al. arXiv:1803.01655

"George" + "John" $\phi(r,t) = Qt + F(r)$

axial (odd parity) quasi-normal modes: $\omega_R R - M/R$

Blazquez-Salcedo et al. arXiv:1803.01655

"George" + "John" $\phi(r,t) = Qt + F(r)$

axial (odd parity) quasi-normal modes: $\omega_I M - M/R$

Neutron Stars Beyond GR

Einstein-Gauss-Bonnet-Dilaton Theory

Action

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R - \frac{1}{2} (\partial_\mu \phi)^2 + \frac{\alpha}{4} e^{-\gamma \phi} R_{\rm GB}^2 \right]$$

Gauss-Bonnet term: quadratic in the curvature

$$R_{\rm GB}^2 = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2$$

- α Gauss-Bonnet coupling constant
- γ dilaton coupling constant ($\gamma = 1$)

Bounds

- observational bound: BH low-mass X-ray binaries: $\sqrt{\alpha} \lesssim 3.8 \times 10^5 \text{cm}$
- theoretical lower bound on BH mass: $\frac{\alpha}{M^2} \lesssim 0.691$

Einstein-Gauss-Bonnet-Dilaton Theory

Neutron Stars Beyond GR

Einstein-Gauss-Bonnet-Dilaton Theory

Blazquez-Salcedo et al. arXiv:1511.03960

axial (odd parity) quasi-normal modes: $M\omega_I - M/R$

Chern-Simons Gravity

action

$$S = \frac{1}{16\pi} \int \sqrt{-g} d^4 x \left[R - 2\nabla_\mu \phi \nabla^\mu \phi - V(\phi) + \alpha_{\rm CS} \phi^* RR \right]$$

two cases

• dynamical:

scalar true dynamical degree of freedom dCS gravity

• nondynamical:

scalar kinetic term absent

- a spherically symmetric solution of GR is also a solution of dCS gravity
- corrections in the presence of a parity-odd source such as rotation

bound: Gravity Probe B

$$\sqrt{|\alpha_{\rm CS}|} < \mathcal{O}(10^{13}) {\rm cm}$$

Chern-Simons Gravity

Yagi et al. 1608.02582

Chern-Simons Gravity

Yagi et al. 1608.02582

Outline

Introduction

Neutron StarsGRBeyond GR

3 Black Holes

4 Conclusions

Black holes in GR

Black holes in GR

A Kerr black hole has no hair

A Kerr black hole is fully characterized in terms of only two global parameters: the mass M and the angular momentum J

Black holes in GR

Geroch, J. Math. Phys. (1970); Hansen, J. Math. Phys. (1974); Thorne, Rev. Mod. Phys. (1980)

Multipole moments M_l (g_{00}) and S_l ($g_{0\phi}$)

All multiple moments can be expressed in terms of only two quantities

$$M_0 = M \qquad S_1 = J$$
$$M_l + iS_l = M \left(i\frac{J}{M}\right)^l$$

Quadrupole moment

$$M_2 = Q = -\frac{J^2}{M}$$

Black holes in GR

Grenzebach et al. arXiv:1403.5234

angular momentum bound

$$j = \frac{J}{M^2} \le 1$$

- $\bullet\ <1$ non-extremal black hole
- \bullet = 1 extremal black hole
- > 1 naked singularity

EGBd black holes

Kanti et al. arXiv:hep-th/9511071, Torii et al. arXiv:gr-qc/9606034

critical black holes:

horizon expansion

$$\sqrt{1-6\frac{\alpha'^2}{r_h^4}}e^{2\phi_h}$$

lower bound on the horizon size for fixed α'

lower bound on the mass

EGBd black holes

Kleihaus et al. arXiv:1101.2868

horizon area versus angular momentum

Jutta Kunz (Universität Oldenburg)

EGBd black holes

Kleihaus et al. arXiv:1101.2868

quadrupole moment versus angular momentum

EGBd black holes

Cunha et al. arXiv:1701.00079

EGBd black holes

Blazquez-Salcedo et al. arXiv:1609.01286

quasi-normal mode (axial l = 2) versus coupling constant

normalized to the Schwarzschild values

EGBd black holes

Blazquez-Salcedo et al. arXiv:1609.01286

quasi-normal mode (polar l = 2) versus coupling constant

normalized to the Schwarzschild values

EsGB black holes

Doneva et al. arXiv:1711.01187, Silva et al. arXiv:1711.02080, Antoniou et al. arXiv:1711.03390

Curvature induced scalarized black holes

action

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \Big[R - 2\nabla_\mu \varphi \nabla^\mu \varphi - V(\varphi) + \lambda^2 f(\varphi) \mathcal{R}_{GB}^2 \Big]$$

coupling function

$$f(\varphi) = \frac{1}{12} \left(1 - e^{-6\varphi^2} \right)$$

small φ

$$f(\varphi) = \frac{1}{2}\varphi^2$$

sequence of radial excitations

EsGB black holes

Blazquez-Salcedo et al. arXiv:1805.05755

EsGB black holes

Cunha et al. arXiv:1904.09997

rotating EsGB black holes

EsGB black holes

Cunha et al. arXiv:1904.09997

EsGB

 $M/\lambda = 0.237(j = 0.24)$

Kerr

Outline

1 Introduction

2 Neutron Stars• GR• Beyond GR

3 Black Holes

Conclusions

GR versus generalized gravity theories

neutron stars

- properties
- quasi-normal modes
- universal relations
- ...

black holes

- \bullet properties
- \bullet shadow
- quasi-normal modes
- ...

THANKS

Jutta Kunz (Universität Oldenburg)

Compact Objects...

Quasinormal Modes

Static Spherically Symmetric Backgrounds Metric

$$ds^{2} = g_{\mu\nu}^{(0)} dx^{\mu} dx^{\nu} = -F(r)dt^{2} + K(r)dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta \, d\varphi^{2})$$

Scalar

$$\phi = \phi_0(r).$$

Matter

$$T_{\mu\nu} = (\rho + p)u_{\mu}u_{\nu} + pg_{\mu\nu}$$
$$p = p_0(r), \quad \rho = \rho_0(r), \quad u = u^{(0)} = u^t \partial_t$$

 $u^2 = -1$

Equation of state

$$\rho = \rho(p)$$

Quasinormal Modes

Perturbations

Metric

$$g_{\mu\nu} = g^{(0)}_{\mu\nu}(r) + \epsilon h_{\mu\nu}(t, r, \theta, \varphi)$$

 Scalar

$$\phi = \phi_0(r) + \epsilon \delta \phi(t, r, \theta, \varphi)$$

Matter

$$\begin{split} p &= p_0(r) + \epsilon \delta p(t,r,\theta,\varphi) \\ \rho &= \rho_0(r) + \epsilon \delta \rho(t,r,\theta,\varphi) \\ u &= u^{(0)} + \epsilon \delta u(t,r,\theta,\varphi) \end{split}$$

Quasinormal Modes

Axial modes: odd-parity perturbations

$$Y_{lm}(\theta,\varphi) \to Y_{lm}(\pi-\theta,\pi+\varphi) = (-1)^{l+1} Y_{lm}(\theta,\varphi)$$

Polar modes: even-parity perturbations

$$Y_{lm}(\theta,\varphi) \to Y_{lm}(\pi-\theta,\pi+\varphi) = (-1)^l Y_{lm}(\theta,\varphi)$$

Eigenvalue ω

$$\omega = \omega_R + i\omega_I$$

Frequency: ω_R Decay time: $\tau = -1/\omega_I$

Stable perturbations:

 $\omega_I < 0$

Unstable perturbations:

 $\omega_I > 0$

Quasinormal Modes

Axial channel

Metric

$$\begin{split} h_{\mu\nu}^{(\text{axial})} &= \int d\omega \sum_{l,m} e^{-i\omega t} \\ \times \begin{bmatrix} 0 & 0 & -h_0 \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} Y_{lm} & h_0 \sin \theta \frac{\partial}{\partial \theta} Y_{lm} \\ 0 & 0 & -h_1 \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} Y_{lm} & h_1 \sin \theta \frac{\partial}{\partial \theta} Y_{lm} \\ -h_0 \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} Y_{lm} & -h_1 \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} Y_{lm} & h_2 \frac{1}{2 \sin \theta} X_{lm} & -\frac{1}{2} h_2 \sin \theta W_{lm} \\ h_0 \sin \theta \frac{\partial}{\partial \theta} Y_{lm} & h_1 \sin \theta \frac{\partial}{\partial \theta} Y_{lm} & -\frac{1}{2} h_2 \sin \theta W_{lm} & -\frac{1}{2} h_2 \sin \theta X_{lm} \end{bmatrix} \\ X_{lm} &= 2 \frac{\partial^2}{\partial \theta \partial \varphi} Y_{lm} - 2 \cot \theta \frac{\partial}{\partial \varphi} Y_{lm} , \quad W_{lm} = \frac{\partial^2}{\partial \theta^2} Y_{lm} - \cot \theta \frac{\partial}{\partial \theta} Y_{lm} - \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} Y_{lm} \\ \text{Scalar, matter} \end{split}$$

$$\delta\phi=\delta\rho=\delta p=\delta u_{\mu}^{(\rm axial)}=0$$

Quasinormal Modes

Polar channel

Metric

$$\begin{aligned} h_{\mu\nu}^{(\text{polar})} &= \int d\omega \sum_{l,m} e^{-i\omega t} \\ &\times \begin{bmatrix} 2NFY_{lm} & -H_1Y_{lm} & -h_{0p}\frac{\partial}{\partial\theta}Y_{lm} & -h_{0p}\frac{\partial}{\partial\varphi}Y_{lm} \\ -H_1Y_{lm} & -2KLY_{lm} & h_{1p}\frac{\partial}{\partial\theta}Y_{lm} & h_{1p}\frac{\partial}{\partial\varphi}Y_{lm} \\ -h_{0p}\frac{\partial}{\partial\varphi}Y_{lm} & h_{1p}\frac{\partial}{\partial\varphi}Y_{lm} & B & -r^2VX_{lm} \\ -h_{0p}\frac{\partial}{\partial\varphi}Y_{lm} & h_{1p}\frac{\partial}{\partial\varphi}Y_{lm} & -r^2VX_{lm} & A \end{bmatrix} \end{aligned}$$

$$A = (l(l+1)V - 2T)r^{2}\sin^{2}\theta Y_{lm} + r^{2}V\sin^{2}\theta W_{lm}$$
$$B = (l(l+1)V - 2T)r^{2}Y_{lm} - r^{2}VW_{lm}$$

Quasinormal Modes

Polar channel

 Scalar

$$\delta \phi^{(\text{polar})} = \int d\omega \, \sum_{l,m} e^{-i\omega t} \Phi_1 \, Y_{lm}$$

Matter

$$\delta \rho^{(\text{polar})} = \int d\omega \sum_{l,m} e^{-i\omega t} \rho_1 Y_{lm}$$
$$\delta p^{(\text{polar})} = \int d\omega \sum_{l,m} e^{-i\omega t} p_1 Y_{lm}$$

$$\delta u^{\mu}_{(\text{polar})} = \int d\omega \, \sum_{l,m} e^{-i\omega t} \left(\frac{-N}{\sqrt{-F}} Y_{lm}, W_f Y_{lm}, V_f \frac{\partial}{\partial \theta} Y_{lm}, V_f \frac{\partial}{\partial \varphi} Y_{lm} \right)$$

Quasinormal Modes

Axial case: h_0, h_1

generalization of Regge-Wheeler equation

Polar case: $H_1, T, p_1, V_f, \Phi_1, \frac{d}{dr}\Phi_1$

generalization of Zerilli equation

- scalar-led modes
- \bullet gravitational-led modes

Asymptotic behaviour: $r \to \infty$

$$\Psi \sim A_{in} e^{-i\omega(t+R^*)} + A_{out} e^{-i\omega(t-R^*)}$$

 $R^*:$ generalized tortoise coordinate

Ringdown phase of black holes and neutron stars

 $A_{in} = 0$: radiation away from compact object

Quasinormal Modes

Calculation

Jutta Kunz (Universität Oldenburg)

Compact Objects...

Scalar-Tensor Theories

action: Jordan frame

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{-\tilde{g}} \left[F(\Phi)\tilde{\mathcal{R}} - Z(\Phi)\tilde{g}^{\mu\nu}\partial_\mu \Phi \partial_\nu \Phi - 2U(\Phi) \right] + S_m \left[\Psi_m; \tilde{g}_{\mu\nu} \right]$$

 G_* : gravitational constant

 \mathcal{R} : Ricci scalar with respect to $\tilde{g}_{\mu\nu}$

 $\Phi:$ gravitational scalar field

 S_m : matter action

 Ψ_m : matter fields

 Φ does not couple directly to Ψ_m : weak equivalence principle is satisfied

Scalar-Tensor Theories

transformation to Einstein frame

$$\left(\frac{d\varphi}{d\Phi}\right)^2 = \frac{3}{4} \left(\frac{d\ln(F(\Phi))}{d\Phi}\right)^2 + \frac{Z(\Phi)}{2F(\Phi)}$$

action: Einstein frame

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{-g} \left[\mathcal{R} - 2g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - 4V(\varphi) \right] + S_m[\Psi_m; \mathcal{A}^2(\varphi)g_{\mu\nu}]$$

relations between the Jordan frame functions $F(\Phi)$ and $U(\Phi)$ and the Einstein frame functions $A(\varphi)$ and $V(\varphi)$

$$A(\varphi) = F^{-1/2}(\Phi) , \qquad 2V(\varphi) = U(\Phi)F^{-2}(\Phi)$$

Scalar-Tensor Theories

Brans–Dicke Theory

$$S = \frac{1}{16\pi G_*} \int d^4x \sqrt{-\tilde{g}} \left[\Phi \tilde{\mathcal{R}} - \frac{\omega(\Phi)}{\Phi} \tilde{g}^{\mu\nu} \left(\partial_\mu \Phi \right) \left(\partial_\nu \Phi \right) - 2U(\Phi) \right] + S_m [\Psi_m, \tilde{g}_{\mu\nu}]$$

relation between Jordan-frame and Einstein-frame quantites

$$\begin{split} \Phi &= A^{-2}(\varphi) \ , \quad 3 + 2\omega(\Phi) = \alpha(\varphi)^{-2} \\ \alpha(\varphi) &\equiv d(\ln A(\varphi))/d\varphi \end{split}$$

 $\begin{array}{l} \alpha(\varphi) = \alpha_0 = \mbox{constant, i.e., } \omega(\Phi) = \mbox{constant} \\ \mbox{observational bound: } \omega > 40000 \mbox{ (Cassini-Huygens)} \\ \mbox{limit: } \omega \to \infty \mbox{ GR} \end{array}$

Scalar-Tensor Theories

Quadratic Gravity

Curvature invariants

$$\begin{aligned} R^2\,, \quad R^2_{\mu\nu}\,, \quad R^2_{\mu\nu\rho\sigma}\,, \quad {}^*\!RR \\ R^2_{\mu\nu} \equiv R_{\mu\nu}R^{\mu\nu} \end{aligned}$$

Kretschmann scalar

$$R^2_{\mu\nu\rho\sigma} \equiv R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma}$$

Pontryagin/Chern-Simons scalar

$${}^{*}\!RR \equiv \frac{1}{2} R_{\mu\nu\rho\sigma} \epsilon^{\nu\mu\lambda\kappa} R^{\rho\sigma}{}_{\lambda\kappa}$$

Levi-Civita tensor $\epsilon^{\mu\nu\rho\sigma}$

Gauss-Bonnet scalar

$$R_{GB}^2 \equiv R^2 - 4R_{\mu\nu}^2 + R_{\mu\nu\rho\sigma}^2$$

Einstein-Gauss-Bonnet-Dilaton Theory

String Theory

unification of all fundamental interactions

dimensional reduction to 4 spacetime dimensions:

low energy effective theories

- \bullet additional fields
 - dilaton
 - axion
 - Maxwell fields
 - Yang-Mills fields
 - ...
- higher order curvature corrections
 - Gauss-Bonnet term
 - ..

• ...
Conclusions

Einstein-Gauss-Bonnet-Dilaton Theory

Action

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R - \frac{1}{2} (\partial_\mu \phi)^2 + \frac{\alpha}{4} e^{-\gamma \phi} R_{\rm GB}^2 \right]$$

Gauss-Bonnet term: quadratic in the curvature

$$R_{\rm GB}^2 = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2$$

- α Gauss-Bonnet coupling constant
- γ dilaton coupling constant ($\gamma = 1$)

In 4 spacetime dimensions the coupling to the dilaton is needed. The resulting set of equations of motion are of second order.

Conclusions

Einstein-Gauss-Bonnet-Dilaton Theory

consequences

- scalar "hair": dilaton "hair"
- negative energy density

bounds on α ($\gamma = 1$)

- \bullet observational
 - Shapiro time delay

$$\sqrt{lpha} \lesssim 10^{13} {
m cm}$$

• BH low-mass X-ray binaries

$$\sqrt{\alpha} \lesssim 3.8 \times 10^5 \mathrm{cm}$$

- theoretical/observational
 - lower bound on BH mass

$$\frac{\alpha}{M^2} \lesssim 0.691$$

Conclusions

Einstein-Gauss-Bonnet-Dilaton Theory

Pani et al. 1109.0928

static neutron stars with APR EoS: dependence on α and β

branches end expansion around origin: square roots reality condition: condition on $\alpha\beta$, maximum central density

Jutta Kunz (Universität Oldenburg)

Compact Objects...