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1 "Who ordered Finsler?"

� Finsler geometry is a framework, allowing for many models;

� Just discarded 250 models out of 500? OK, then take another 500.



� Still, why would we consider Finsler?
- modi�ed dispersion relations, Lorentz violating standard model exten-
sions;.
- kinetic theory of gases - more accurate description of a gravitating gas;
- address dark energy/dark matter geometrically

� Pseudo-Finsler geometry includes pseudo-Riemannian geometry;
- Finsler �eld theories = extended �eld theories, GR is a particular case;
- most general geometry with a geometric clock;
- retains: weak equivalence principle, a precise notion of causal structure
of spacetime;
- generally, no local Lorentz invariance.



2 Positive de�nite Finsler geometry

- Riemann (1854): proposed: ds = F (x; dx)

(F � 0, homogeneous of the degree 1 and convex in dx).
- 1918: P. Finsler - �rst systematic study of such metrics F

Bernhard Riemann
(1826�1866)

Paul Finsler
(1894-1970)



Take: M - smooth manifold, dimM = 4; (xi; _xi) - coords on TM

De�nition: F : TM ! R; (x; _x)! F (x; _x) - Finsler norm, if:

1) F = F (x; _x) is C1-di¤erentiable for _x 6= 0;

2) F (x; � _x) = �F (x; _x), 8� > 0

3) The Hessian gij(x; _x) =
1

2

@2F 2

@ _xi@ _xj
is positive de�nite for _x 6= 0:

Properties:
- each Fx : TxM ! R - "norm" (not necessarily from a scalar product)
- rods and clocks - yes;
- but: no direct method of measuring angles



Length of a curve c : t 2 [a; b]! (xi(t)) in (M;F ) :

l(c) =

bZ
a

F (x(t);
dx

dt
(t))dt =

bZ
a

q
gij(x; _x) _xi _xjdt:

Remark: l(c) - independent on the parametrization of c:

Main classes of Finsler metrics:
1) Riemann spaces: F (x; _x) =

q
gij(x) _xi _xj;

2) Randers spaces: F (x; _x) =
q
aij(x) _xi _xj + bi(x) _x

i;

3) Kropina spaces: F (x; _x) = aij(x) _xi _xj(bk(x) _x
k)�1;

4) m-th root metric spaces F (x; _x) = m
q
ai1i2:::im(x) _x

i1 _xi2::: _xim:

Remark: In 3) and 4), F is NOT everywhere smooth for _x 6= 0 (!).



� Set: L = F 2 ) L(x; _x) = gij(x; _x) _x
i _xj:

� Geodesics s 7! (xi(s)) of a Finsler manifold:

d2xi

ds2
+ 2�ijk(x;

dx

ds
)
dxj

ds

dxk

ds
= 0:

In particular: if gij = gij(x); then 2Gi(x; _x) = �ijk(x) _x
j _xk:

� Geodesic deviation, local behavior of neighboring geodesics � determined
by �ag curvature

Rij(x; _x) = R
i
k jl(x; _x) _x

k _xl

(Rij - 2-homogeneous in the velocities).



3 Finsler spacetimes

Roughly speaking: (M;L) �Finsler spacetime, if:
- L : TM ! R - continuous everywhere, smooth almost everywhere;
- good cone structure:

gij(x; _x) =
1

2

@2L

@ _xi@ _xj

are de�ned, smooth and of Lorentzian signature for an entire connected com-
ponent of a cone at each x 2M ;

- local existence and uniqueness of causal geodesics with given initial conditions.

Interpretation:

ds2 = L(x; dx)



� De�nition below: M. Hohmann, C. Pfeifer, N. Voicu, PRD 100, 064035
(2019);
We want to allow, e.g., for such things:

- Q � TMnf0g - conic subbundle if: (x; _x) 2 Q ) (x; � _x) 2 Q, 8� > 0:



Finsler spacetime = a pair (M;L), where L : TM ! R is a continuous
function, s.th.:
1) Positive 2-homogeneity: L(x; � _x) = �2L(x; _x), 8� > 0:
2) Almost everywhere smoothness: 9 a conic subbundleA � TM with TMnA
of measure zero, s.th., on A; L is smooth and the matrix

gLij =
1

2

@2L

@ _xi@ _xj
=
1

2
L�i�j

is non-degenerate.
3) Future directed timelike vectors: 9 a connected component T �
L�1((0;1)); with T � A; on which gL has (+;�;�;�) signature.
4) Causal geodesics: The Euler-Lagrange equations

d

d�
_@iL� @iL = 0 :

have a unique local solution for every initial condition (x; _x) 2 T [ N , where
N = kerL:



Conic subbundles of TM :
- A - admissible vectors (g - exists and is smooth);
- T - future directed timelike vectors (T � A; L > 0; g is (+;�;�;�));
- N - null vectors;

� T � A; @T � N ; no relation required between N and A:

� F :=
q
jLj - arc length element: cd� = F (x; dx):

Examples of Finsler spacetimes: L = F 2;
- Randers type F =

q
jaij _xi _xjj+ bi _xi, with 0 < g�1(b; b) < 1;

- Bogoslovsky/Kropina type F = (jaij _xi _xjj)
1�q
2 (bk(x) _x

k)q, g�1(A;A) �
0 - DSR
- polynomial m-th root type F = jGa1���am(x) _xa1 : : : _xamj

1
m - birefringence.



light cone for a quartic Finsler metric



4 The stage for a Finsler gravity action

4.1 Finslerian �elds: accommodating homogeneity

Consider an arbitrary �bered manifold (F ; �F ;
�
TM):

Finslerian �eld = a section � :
�
TM ! F ; (x; _x) 7! �(x; _x); positively

homogeneous of some degree k in _x:

Examples: a) Finsler function L :
�
TM ! R (k = 2);

b) 1-particle distribution function for a �uid ' :
�
TM ! R (k = 0):

Problem: homogeneity ! we can�t use classical variational principle on F



Which con�guration space to choose?

1) Tangent bundle approach: X =
�
TM; Y = F

Problems: homogeneity ! we can�t set �L(x; _x) = 0 on the boundary @D;
- restrictions to be imposed on variations (s.th. the modi�ed L is still 2-
homogeneous).

2) Unit sphere bundle (observer space) approach: X = SM; Y = F
SM = f(x; _x) 2 TM j L(x; _x) = 1g :
Problems: SxM is non-compact (!) and depends on L:
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3) Projectivised bundle approach (to be discussed below):
- no problem in applying the classical variational principle
- Finslerian �elds can be naturally described as sections of bundles sitting over
PTM+ (+ no restrictions needed on variations to preserve homogeneity of
dynamical variable).

The positive projective bundle PTM+ := f[(x; _x)]� j (x; _x) 2
�
TMg:

(x; _x) � (x; u), u = � _x for some � > 0:

A point on PTM+ = a half-line in TM:

� PTM+ is a compact, orientable 7-dimensional manifold.



� (xi; _xi) - local homogeneous coordinates on PTM+.

�
�
TM - principal bundle over PTM+; with �ber: (R�+; �) :

� :
�
TM � R�+ !

�
TM; (x; _x) � � = (x; � _x) : (1)

� (
�
TM; �+; PTM+) - principal bundle, with:

�+ :
�
TM ! PTM+; (x; _x) 7! [(x; _x)] :

� Calculus on PTM+ - performed identically to the one on TM

� Integrals on compact subsets D+ � PTM+ = integrals on compact
subsets D � SM , where D+ = �+(D):



M,C,N and the secret weapon: PTM+



4.2 Finslerian �elds as sections

Problem: L = L(x; _x); not L([x; _x]) (!)
How to describe it as a section  : PTM+ ! Y ?

(R�+; �) - Lie group, acting on both
�
TM and F :

Remark. � : TM ! F - Finslerian �eld , � - (equivariant map,) w. r.t.
the Lie group actions:

� :
�

TM � R�+ !
�
TM; (x; _x) � � = (x; � _x);

� : R�+ �F ! F ; � � z = �kz:

Associated bundle (base - PTM+; �ber - F):

Y := (
�
TM �F)=�



where (x; _x; y�) � (x; � _x; �ky�); � 2 R�+:
Y - �bered manifold over PTM+; with projection:

� : Y ! PTM+; [(xi; _xi; y�]! [(x; _x)]

Local coords. on Y : (xi; u�; y�) - or (xi; _xi; y�) (using homogeneous coords
on PTM+).

� Finsler �elds � : TM ! F - in one-to-one correspondence with sections
of Y :

� 7!  : PTM+ ! Y; ([x; _x]) = [x; _x;�(x; _x)]: (2)

Finsler �eld Lagrangians:

� = LV ol; L = L(xi; _xi; y�; :::; y�;i1:::�il:::ir);



where � : (xi; _xi) 7! (y�(xi; _xi)), V ol = iC(d
4x ^ d4 _x):

� Necessary condition: � - 0-homogeneous 7-form.

5 A concrete vacuum action

Geodesics of (M;L):
d2xi

ds2
+ 2Gij(x;

dx

ds
)
dxj

ds
= 0: (*)

- Gij(x; _x) - coe¤s. of canonical non-linear connection

N : TA = HA� VA:

- N induces a (nonlinear)covariant derivative: r : �(A)�X (M)! X (M):



� Geodesic equation (*) then becomes: r _c _c = 0:

� Geodesic deviation equation: r _cr _c� = R( _c; �);

� - R( _c; �) = Rij( _c)�j@i - determined by �rst derivs of Gij:
R := Rii : A ! R - (non-homogenized) Finslerian Ricci scalar

Conjectured vacuum �eld equation (Rutz, 1993):

R = 0:

� Rutz eqn. is not variational ) which is its "closest" variational eqn?



F := R; k = 2; Y := (TM � R�+)=�
L - 2-homogeneous $ section of Y :  : (xi; _xi) 7! (xi; _xi; L(x; _x)).

Start from Rutz equation ! �nd the "closest" Lagrangian
Technique: canonical variational completion (Voicu-Krupka, 2015)



- Start with arbitrary PDE system: "�(xA; y�; y
�
A; :::y

�
A1:::Ar

) = 0 (**)
- Vainberg-Tonti Lagrangian density:

L = y�
1Z
0

"�(x
A; ty�; ty

�
A; :::; ty

�
A1:::Ar

)dt

VT-Lagrangian - built from "� alone.
Properties of VT-Lagrangian:
1) If (**) - locally variational) its Lagrangian density is, up to a total derivative
term, L:
2) De�ne Helmholtz form components:

H� := E� � "�;

where

E� =
@L
@y�

� di(
@L
@y�i

) + :::+ (�1)rdi1:::dir(
@L

@y�i1:::ir
)



Helmholtz conditions: (**) is locally variational ()

H� = 0; � = 1; :::;m: (3)

Example: (M; g) - Lorentzian manifold. Variational completion of rij = 0 is:

rij �
1

2
rgij = 0:

Apply this technique to Rutz�s equation )

L = L�3R jdet gj :
(�Pfeifer-Wohlfarth, 2011; Chen-Shen, 2008 - positive de�nite Finsler metrics)

Field equation:

3R� 1
2
gijR�ij + g

ij[(rPi)�j + Pijj � PiPj] = 0:



Particular case: In Lorentzian spaces (M;L = gij(x) _xi _xj); �eld eqn - equiv-
alent to:

rij = 0:



6 Kinetic gas

- starting point: M. Hohmann, Int. J. Mod. Phys. A 31(2-3), 1641012 (2016)

- fundamental variable: 1-particle distribution function

' : O ! R; ' = '(x; _x)

- O = f(x; _x) 2 T j L(x; _x) = 1g - observer space;
-Number counting integral

N :=
Z
�

'


gives the number of particle trajectories (C) which intersect a given hypersur-
face � � O
- Assumption: 'x = '(x; �) - compactly supported



- Reeb vector �eld r = li�i - tangent to lifts

C : s 7! (x(s);
dx

ds
(s))

of geodesics of M:
Property: ' - obeys the Liouville equation: r(') = 0:

Meaning of Liouville equation: ' is conserved along timelike geodesics of M:



7 Finsler description of kinetic gas

- Idea: Liouville equation = Finslerian energy-momentum conservation:

- Matter Lagrangian: �matter := �'
jdet gj
L2

V ol0 )
- �eld equation:

3R� 1
2
gijR�ij + g

ij[(rPi)�j + Pijj � PiPj] =
�

2
'

- (!) No Riemannian solution on the support of ' :

R�ij = R�ij(x; _x) inside supp(');

R�ij = 0 outside supp('):



De�ne: Energy-momentum source tensor (on TM):

Tij = 'u
iuj

- Tij = T
i
j(x; _x) obey the covariant conservation law

Tijji = 0 (4)

- Note (4) - is equivalent to the Liouville equation r(') = 0;
- Usual energy-momentum tensor (on M) - obtained as:

T ij(x) :=
Z
Ox

Tij(x; _x)d�x =
Z
Ox

'uiujd�x

(consistent with: Zannias&Sarbach, 2014)



Conclusions:

1. Finsler �eld theories are mathematically well de�ned, once we choose as
base manifold the (oriented) projective tangent bundle PTM+.

2. We constructed a concrete vacuum action (! Pfeifer-Wohlfarth equation)

3. Kinetic gas theory is naturally Finslerian - and o¤ers a more accurate de-
scription of a �uid.

Future prospects:

- Construct and study a cosmological model; �nd observables.
- De�ne an averaging procedure! could dark energy be (partially) an averaging
e¤ect?




